Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.184-187
/
1995
This paper proposes an algorithm for machine recognition of phonemes in continuous speech. The proposed algorithm is static strategy neural network. The algorithm uses, at the stage of training neuron, features such as PARCOR coefficient and auditory-like perceptual liner prediction . These features are extracted from speech samples selected by a sliding 25.6msec windows with s sliding gap being 3 msec long, then interleaved and summed up to 7 sets of parmeters covering 171 msec worth of speech for use of neural inputs. Perfomances are compared when either PARCOR or auditory-like PLP is included in the feture set.
Speech act tagging is an important step in various dialogue applications, which recognizes speaker's intentions expressed in natural language utterances. Previous approaches such as rule-based and statistics-based methods utilize the speech acts of previous utterances and sentence features of the current utterance. This paper proposes a method that determines speech acts of the current utterance using the speech acts of the following utterances as well as previous ones. Using the features of following utterances yields the accuracy 95.27%, improving previous methods by 3.65%. Moreover, sentence features of the previous utterances are employed to maximally utilize the information available to the current utterance. By applying the proper probability model for each speech act, final accuracy of 97.97% is achieved.
Speech act is the speaker's intentions indicated through utterances. It is important for understanding natural language dialogues and generating responses. This paper proposes the method of two stage that increases the performance of the korean speech act decision. The first stage is to select features from the part of speech results in sentence and from the context that uses previous speech acts. We use x$^2$ statistics(CHI) for selecting features that have showed high performance in text categorization. The second stage is to determine speech act with selected features and Neural Network. The proposed method shows the possibility of automatic speech act decision using only POS results, makes good performance by using the higher informative features and speed up by decreasing the number of features. We tested the system using our proposed method in Korean dialogue corpus transcribed from recording in real fields, and this corpus consists of 10,285 utterances and 17 speech acts. We trained it with 8,349 utterances and have test it with 1,936 utterances, obtained the correct speech act for 1,709 utterances(88.3%). This result is about 8% higher accuracy than without selecting features.
KIPS Transactions on Software and Data Engineering
/
v.12
no.8
/
pp.365-370
/
2023
This paper aims to compare the performance of speech data classification into two groups, adult and elderly, based on the acoustic and linguistic characteristics that change due to aging, such as changes in respiratory patterns, phonation, pitch, frequency, and language expression ability. For acoustic features we used attributes related to the frequency, amplitude, and spectrum of speech voices. As for linguistic features, we extracted hidden state vector representations containing contextual information from the transcription of speech utterances using KoBERT, a Korean pre-trained language model that has shown excellent performance in natural language processing tasks. The classification performance of each model trained based on acoustic and linguistic features was evaluated, and the F1 scores of each model for the two classes, adult and elderly, were examined after address the class imbalance problem by down-sampling. The experimental results showed that using linguistic features provided better performance for classifying adult and elderly than using acoustic features, and even when the class proportions were equal, the classification performance for adult was higher than that for elderly.
We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.
The purpose of this study is to examine the difference in acoustic features between Young Voices and Aged Voices, which are actually come from the same age group. The 12 female subjects in their thirties were participated and recorded their sustained vowel /a/, connected speech, and reading. Their voices were divided into Younger Voices and Aged Voices, which means voices sound like younger person and sound like in their age or more aged ones. Praat 4.4.22 was used to record and analyze their acoustic features like Fo, SFF, Jitter, Shimmer, HNR, Pitch-range. And the six female listeners guessed the subjects' age and judged whether they sound younger or as like their actual age. We used the Independent t-Test to find the significant difference between those two groups' acoustic features. The result shows a significant difference in Fo, SFF. The above and the previous studies tell us the group who sounds like younger or baby like voice has the similar acoustic features of actually young people.
In this paper, we design and implement complement based speech training system for voice disorder. The system consists of three level of training: precedent training, training for speech apprehension and training for speech enhancement. To analyze speech of voice disorder, we extracted speech features as loudness, amplitude, pitch using digital signal processing technique. Extracted features are converted to graphic interface for visual feedback of speech by the system.
An intonation curve stylization was used for an acoustical analysis of English speech. For the analysis, acoustical feature values were extracted from 1,848 utterances produced with normal and fast speech rate by 28 (12 women and 16 men) native speakers of English. Men are found to speak faster than women at normal speech rate but no difference is found between genders at fast speech rate. Analysis of pitch point features has it that fast speech has greater Pt (pitch point movement time), Pr (pitch point pitch range), and Pd (pitch point distance) but smaller Ps (pitch point slope) than normal speech. Men show greater Pt, Pr, and Pd than women. Analysis of sentence level features reveals that fast speech has smaller Sr (sentence level pitch range), Sd (sentence duration), and Max (maximum pitch) but greater Ss (sentence slope) than normal speech. Women show greater Sr, Ss, Sp (pitch difference between the first pitch point and the last), Sd, MaxNr (normalized Max), and MinNr (normalized Min) than men. As speech rate increases, women speak with greater Ss and Sr than men.
Speech recognition in digital communication systems has very low performance due to the spectral distortion caused by speech codecs. In this paper, the spectral distortion by speech codecs is analyzed and a pre-processing method which compensates for the spectral distortion is proposed for performance enhancement of speech recognition. Three standard speech codecs. IS-127 EVRC. ITU G.729 CS-ACELP and IS-96 QCELP. are considered for algorithm development and evaluation, and a single method which can be applied commonly to all codecs is developed. The performance of the proposed method is evaluated for three codecs, and by using the speech features extracted from the compensated spectrum. the recognition rate is improved by the maximum of $15.6\%$ compared with that using the degraded speech features.
A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating the acoustic mismatch between training and test environments, but also at reducing the discrepancy between the phonetic distributions of training and test speech data. The algorithm utilizes multiple class-specific reference and test cumulative distribution functions, classifies the noisy test features into their corresponding classes, and equalizes the features by using their corresponding class-specific reference and test distributions. Experiments on the Aurora 2 database proved the effectiveness of the proposed method by reducing relative errors by 18.74%, 17.52%, and 23.45% over the conventional histogram equalization method and by 59.43%, 66.00%, and 50.50% over mel-cepstral-based features for test sets A, B, and C, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.