• Title/Summary/Keyword: speech error

Search Result 581, Processing Time 0.026 seconds

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Speech Enhancement Using Phase-Dependent A Priori SNR Estimator in Log-Mel Spectral Domain

  • Lee, Yun-Kyung;Park, Jeon Gue;Lee, Yun Keun;Kwon, Oh-Wook
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.721-729
    • /
    • 2014
  • We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.

Developing the speech screening test for 4-year-old children and application of Korean speech sound analysis tool (KSAT) (4세 말소리발달 선별검사 개발과 한국어말소리분석도구(Korean Speech Sound Analysis Tool, KSAT)의 활용)

  • Soo-Jin Kim;Ki-Wan Jang;Moon-Soo Chang
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • This study aims to develop a three-sentence speech screening test to evaluate speech development in 4-year-old children and provide standards for comparison with peers. Screening tests were conducted on 24 children each in the first and second halves of 4 years old. The screening test results showed a correlation of .7 with the existing speech disorder evaluation test results. We compared whether there was a difference between the two groups of 4-year-old in the phonological development indicators and error patterns obtained through the screening test. The developmental indicators of the children in the second half were high, but there were no statistically significant differences. The Korean Speech Sound Analysis Tool (KSAT) was used for all analyses, and the automatic analysis results and contents of the clinician's manual analysis were compared. The degree of agreement between the automatic and manual error pattern analyses was 93.63%. The significance of this study is that the standard of speech of a 4-year-old child of the speech screening test according to three sentences at the level of elicited sentences, and the applicability of the KSAT were reviewed in both clinical and research fields.

A User friendly Remote Speech Input Unit in Spontaneous Speech Translation System

  • Lee, Kwang-Seok;Kim, Heung-Jun;Song, Jin-Kook;Choo, Yeon-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.784-788
    • /
    • 2008
  • In this research, we propose a remote speech input unit, a new method of user-friendly speech input in speech recognition system. We focused the user friendliness on hands-free and microphone independence in speech recognition applications. Our module adopts two algorithms, the automatic speech detection and speech enhancement based on the microphone array-based beamforming method. In the performance evaluation of speech detection, within-200msec accuracy with respect to the manually detected positions is about 97percent under the noise environments of 25dB of the SNR. The microphone array-based speech enhancement using the delay-and-sum beamforming algorithm shows about 6dB of maximum SNR gain over a single microphone and more than 12% of error reduction rate in speech recognition.

  • PDF

Designing of Speech DB for Korean Pronunciation Education (한국어 발음 교육을 위한 음성 DB 구축 방안)

  • Jung Myungsook
    • MALSORI
    • /
    • no.47
    • /
    • pp.51-72
    • /
    • 2003
  • The purpose of this paper is to design Speech Database for Korean pronunciation education. For this purpose, I investigated types of speech errors of Korean-learners, made texts for recording, which involves all types of speech errors, and showed how to gather speech data and how to tag their informations. It's natural that speech data should include Korean-learners' speech and Korean people's speech, because Speech DB that I try to develop is for teaching Korean pronunciation to foreigners. So this DB should have informations about speakers and phonetic informations, which are about phonetic value of segments and intonation of sentences. The intonation of sentence varies with the type of sentence, the structure of prosodic units, the length of a prosodic unit and so on. For this reason, Speech DB must involve tags about these informations.

  • PDF

Rule-based Speech Recognition Error Correction for Mobile Environment (모바일 환경을 고려한 규칙기반 음성인식 오류교정)

  • Kim, Jin-Hyung;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.25-33
    • /
    • 2012
  • In this paper, we propose a rule-based model to correct errors in a speech recognition result in the mobile device environment. The proposed model considers the mobile device environment with limited resources such as processing time and memory, as follows. In order to minimize the error correction processing time, the proposed model removes some processing steps such as morphological analysis and the composition and decomposition of syllable. Also, the proposed model utilizes the longest match rule selection method to generate one error correction candidate per point, assumed that an error occurs. For the purpose of deploying memory resource, the proposed model uses neither the Eojeol dictionary nor the morphological analyzer, and stores a combined rule list without any classification. Considering the modification and maintenance of the proposed model, the error correction rules are automatically extracted from a training corpus. Experimental results show that the proposed model improves 5.27% on the precision and 5.60% on the recall based on Eojoel unit for the speech recognition result.

Robust Speech Enhancement Using HMM and $H_\infty$ Filter (HMM과 $H_\infty$필터를 이용한 강인한 음성 향상)

  • 이기용;김준일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.540-547
    • /
    • 2004
  • Since speech enhancement algorithms based on Kalman/Wiener filter require a priori knowledge of the noise and have focused on the minimization of the variance of the estimation error between clean and estimated speech signal, small estimation error on the noise statistics may lead to large estimation error. However, H/sub ∞/ filter does not require any assumptions and a priori knowledge of the noise statistics, but searches the best estimated signal among the entire estimated signal by applying least upper bound, consequently it is more robust to the variation of noise statistics than Kalman/Wiener filter. In this paper, we Propose a speech enhancement method using HMM and multi H/sub ∞/ filters. First, HMM parameters are estimated with the training data. Secondly, speech is filtered with multiple number of H/sub ∞/ filters. Finally, the estimation of clean speech is obtained from the sum of the weighted filtered outputs. Experimental results shows about 1dB∼2dB SNR improvement with a slight increment of computation compared with the Kalman filter method.

The Evaluation of the Fuzzy-Chaos Dimension and the Fuzzy-Lyapunov Ddimension (화자인식을 위한 퍼지-상관차원과 퍼지-리아프노프차원의 평가)

  • Yoo, Byong-Wook;Park, Hyun-Sook;Kim, Chang-Seok
    • Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.167-183
    • /
    • 2000
  • In this paper, we propose two kinds of chaos dimensions, the fuzzy correlation and fuzzy Lyapunov dimensions, for speaker recognition. The proposal is based on the point that chaos enables us to analyze the non-linear information contained in individual's speech signal and to obtain superior discrimination capability. We confirm that the proposed fuzzy chaos dimensions play an important role in enhancing speaker recognition ratio, by absorbing the variations of the reference and test pattern attractors. In order to evaluate the proposed fuzzy chaos dimensions, we suggest speaker recognition using the proposed dimensions. In other words, we investigate the validity of the speaker recognition parameters, by estimating the recognition error according to the discrimination error of an individual speaker from the reference pattern.

  • PDF

Effective speech recognition system for patients with Parkinson's disease (파킨슨병 환자에 대한 효과적인 음성인식 시스템)

  • Huiyong, Bak;Ryul, Kim;Sangmin, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.655-661
    • /
    • 2022
  • Since speech impairment is prevalent in patients with Parkinson's disease (PD), speech recognition systems suitable for these patients are needed. In this paper, we propose a speech recognition system that effectively recognizes the speech of patients with PD. The speech recognition system is firstly pre-trained with the Globalformer using the speech data from healthy people, and then fine-tuned using relatively small amount of speech data from the patient with PD. For this analysis, we used the speech dataset of healthy people built by AI hub and that of patients with PD collected at Inha University Hospital. As a result of the experiment, the proposed speech recognition system recognized the speech of patients with PD with Character Error Rate (CER) of 22.15 %, which was a better result compared to other methods.

Common Speech Database Collection and Validation for Communications (한국어 공통 음성 DB구축 및 오류 검증)

  • Lee Soo-jong;Kim Sanghun;Lee Youngjik
    • MALSORI
    • /
    • no.46
    • /
    • pp.145-157
    • /
    • 2003
  • In this paper, we'd like to briefly introduce Korean common speech database, which project has been started to construct a large scaled speech database since 2002. The project aims at supporting the R&D environment of the speech technology for industries. It encourages domestic speech industries and activates speech technology domestic market. In the first year, the resulting common speech database consists of 25 kinds of databases considering various recording conditions such as telephone, PC, VoIP etc. The speech database will be widely used for speech recognition, speech synthesis, and speaker identification. On the other hand, although the database was originally corrected by manual, still it retains unknown errors and human errors. So, in order to minimize the errors in the database, we tried to find the errors based on the recognition errors and classify several kinds of errors. To be more effective than typical recognition technique, we will develop the automatic error detection method. In the future, we will try to construct new databases reflecting the needs of companies and universities.

  • PDF