• 제목/요약/키워드: speech emotion recognition

검색결과 135건 처리시간 0.022초

음성 변환을 사용한 감정 변화에 강인한 음성 인식 (Emotion Robust Speech Recognition using Speech Transformation)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.683-687
    • /
    • 2010
  • 본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 음성 변환 방법 중의 한가지인 주파수 와핑 방법을 사용한 연구를 수행하였다. 이러한 목표를 위하여 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정의 변화에 따라 음성의 스펙트럼이 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 논문에서는 이러한 음성의 변화를 감소시키는 방법으로 주파수 와핑을 학습 과정에 사용하는 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 구현하였고 성도 길이 정규화 방법을 사용한 방법과 성능을 비교하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법은 사용하면 감정이 포함된 데이터에 대한 인식 오차가 기존 방법보다 감소되었다.

Multimodal Parametric Fusion for Emotion Recognition

  • Kim, Jonghwa
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.193-201
    • /
    • 2020
  • The main objective of this study is to investigate the impact of additional modalities on the performance of emotion recognition using speech, facial expression and physiological measurements. In order to compare different approaches, we designed a feature-based recognition system as a benchmark which carries out linear supervised classification followed by the leave-one-out cross-validation. For the classification of four emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, we experienced extremely high disparity between single class recognition rates, while we could not observe a best performing single modality in our experiment. Based on these observations, we developed a novel fusion method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition compared to the best unimodal results.

자연스러운 정서 반응의 범주 및 차원 분류에 적합한 음성 파라미터 (Acoustic parameters for induced emotion categorizing and dimensional approach)

  • 박지은;박정식;손진훈
    • 감성과학
    • /
    • 제16권1호
    • /
    • pp.117-124
    • /
    • 2013
  • 본 연구는 음성 인식기에서 일반적으로 사용되는 음향적 특징인 MFCC, LPC, 에너지, 피치 관련 파라미터들을 이용하여 자연스러운 음성의 정서를 범주 및 차원으로 얼마나 잘 인식할 수 있는지 살펴보았다. 자연스러운 정서 반응 데이터를 얻기 위해 선행 연구에서 이미 타당도와 효과성이 밝혀진 정서 유발 자극을 사용하였고, 110명의 대학생들에게 7가지 정서 유발 자극을 제시한 후 유발된 음성 반응을 녹음하여 분석에 사용하였다. 각 음성 데이터에서 추출한 파라미터들을 독립변인으로 하여 선형 판별 분석(LDA)으로 7가지 정서 범주를 분류하였고, 범주 분류의 한계를 극복하기 위해 단계별 다중회귀(stepwise multiple regression) 모형을 도출하여 4가지 정서 차원(valence, arousal, intensity, potency)을 가장 잘 예측하는 음성 특징 파라미터를 산출하였다. 7가지 정서 범주 판별율은 평균 62.7%이었고, 4 차원 예측 회귀모형들도 p<.001수준에서 통계적으로 유의하였다. 결론적으로, 본 연구 결과는 자연스러운 감정의 음성 반응을 분류하는데 유용한 파라미터들을 선정하여 정서의 범주와 차원적 접근으로 정서 분류 가능성을 보였으며 논의에 본 연구의 개선방향에 대해 기술하였다.

  • PDF

감정 적응을 이용한 감정 화자 인식 (Emotional Speaker Recognition using Emotional Adaptation)

  • 김원구
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1105-1110
    • /
    • 2017
  • Speech with various emotions degrades the performance of the speaker recognition system. In this paper, a speaker recognition method using emotional adaptation has been proposed to improve the performance of speaker recognition system using affective speech. For emotional adaptation, emotional speaker model was generated from speaker model without emotion using a small number of training affective speech and speaker adaptation method. Since it is not easy to obtain a sufficient affective speech for training from a speaker, it is very practical to use a small number of affective speeches in a real situation. The proposed method was evaluated using a Korean database containing four emotions. Experimental results show that the proposed method has better performance than conventional methods in speaker verification and speaker recognition.

FAES : 감성 표현 기법을 이용한 얼굴 애니메이션 구현 (On the Implementation of a Facial Animation Using the Emotional Expression Techniques)

  • 김상길;민용식
    • 한국콘텐츠학회논문지
    • /
    • 제5권2호
    • /
    • pp.147-155
    • /
    • 2005
  • 본 논문은 여러 가지 감정들 중에서 4가지 감정의 범주 즉, 중성, 두려움, 싫증 및 놀람을 포함한 음성과 감성이 결합되어진 얼굴의 표정을 좀 더 정확하고 자연스러운 3차원 모델로 만들 수 있는 FAES(a Facial Animation with Emotion and Speech) 시스템을 구축하는데 그 주된 목적이 있다. 이를 위해서 먼저 사용할 훈련자료를 추출하고 난후에 감성을 처리한 얼굴 애니메이션에서는 SVM(Support vector machine)[11]을 사용하여 4개의 감정을 수반한 얼굴 표정을 데이터베이스로 구축한다. 마지막으로 얼굴 표정에 감정과 음성이 표현되는 시스템을 개발하는 것이다. 얼굴 표정을 위해서 본 논문에서는 한국인 청년을 대상으로 이루어졌다. 이런 시스템을 통한 결과가 기존에 제시된 방법에 비해서 감정의 영역을 확대시킴은 물론이고 감정인지의 정확도가 약 7%, 어휘의 연속 음성인지가 약 5%의 향상을 시켰다.

  • PDF

음성 데이터의 내재된 감정인식을 위한 다중 감정 회귀 모델 (Multi-Emotion Regression Model for Recognizing Inherent Emotions in Speech Data)

  • 이명호;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.81-88
    • /
    • 2023
  • 최근 코로나19로 인한 비대면 서비스의 확산으로 온라인을 통한 소통이 증가하고 있다. 비대면 상황에서는 텍스트나 음성, 이미지 등의 모달리티를 통해 상대방의 의견이나 감정을 인식하고 있다. 현재 다양한 모달리티를 결합한 멀티모달 감정인식에 관한 연구가 활발하게 진행되고 있다. 그중 음성 데이터를 활용한 감정인식은 음향 및 언어정보를 통해 감정을 이해하는 수단으로 주목하고 있으나 대부분 단일한 음성 특징값으로 감정을 인식하고 있다. 하지만 대화문에는 다양한 감정이 복합적으로 존재하기 때문에 다중 감정을 인식하는 방법이 필요하다. 따라서 본 논문에서는 복합적으로 존재하는 내재된 감정인식을 위해 음성 데이터를 전처리한 후 특징 벡터를 추출하고 시간의 흐름을 고려한 다중 감정 회귀 모델을 제안한다.

다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템 (Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm)

  • 염홍기;주종태;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.

운율 특성 벡터와 가우시안 혼합 모델을 이용한 감정인식 (Emotion Recognition using Prosodic Feature Vector and Gaussian Mixture Model)

  • 곽현석;김수현;곽윤근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.762-766
    • /
    • 2002
  • This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features

  • PDF

감성인식과 핵심어인식 기술을 이용한 고객센터 자동 모니터링 시스템에 대한 연구 (A Study on the Automatic Monitoring System for the Contact Center Using Emotion Recognition and Keyword Spotting Method)

  • 윤원중;김태홍;박규식
    • 인터넷정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.107-114
    • /
    • 2012
  • 본 논문에서는 고객의 불만관리 및 상담원의 상담품질 관리를 위한 고객센터 자동 모니터링 시스템에 대한 연구를 진행하였다. 제안된 시스템에서는 평상/화남의 2가지 감성에 대한 음성 감성인식 기술과 핵심어인식 기술을 사용하여 상담내역에 대한 보다 정확한 모니터링이 가능하고, 욕설, 성희롱 등의 언어폭력을 일삼는 고객에 대한 전문상담 및 관리가 가능하다. 서로 다른 환경에서 구축된 이종 음성 DB를 이용하여 불특정 고객들의 질의 음성에 안정적으로 동작할 수 있는 알고리즘을 개발하였으며, 실제 고객센터 상담내역 데이터를 이용하여 성능을 검증하였다.

은닉 마르코프 모델을 이용한 음성에서의 감정인식 (Emotion recognition in speech using hidden Markov model)

  • 김성일;정현열
    • 융합신호처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.21-26
    • /
    • 2002
  • 본 논문은 분노, 행복, 평정, 슬픔, 놀람 등과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과로서, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.

  • PDF