본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 음성 변환 방법 중의 한가지인 주파수 와핑 방법을 사용한 연구를 수행하였다. 이러한 목표를 위하여 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정의 변화에 따라 음성의 스펙트럼이 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 논문에서는 이러한 음성의 변화를 감소시키는 방법으로 주파수 와핑을 학습 과정에 사용하는 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 구현하였고 성도 길이 정규화 방법을 사용한 방법과 성능을 비교하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법은 사용하면 감정이 포함된 데이터에 대한 인식 오차가 기존 방법보다 감소되었다.
International journal of advanced smart convergence
/
제9권1호
/
pp.193-201
/
2020
The main objective of this study is to investigate the impact of additional modalities on the performance of emotion recognition using speech, facial expression and physiological measurements. In order to compare different approaches, we designed a feature-based recognition system as a benchmark which carries out linear supervised classification followed by the leave-one-out cross-validation. For the classification of four emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, we experienced extremely high disparity between single class recognition rates, while we could not observe a best performing single modality in our experiment. Based on these observations, we developed a novel fusion method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition compared to the best unimodal results.
본 연구는 음성 인식기에서 일반적으로 사용되는 음향적 특징인 MFCC, LPC, 에너지, 피치 관련 파라미터들을 이용하여 자연스러운 음성의 정서를 범주 및 차원으로 얼마나 잘 인식할 수 있는지 살펴보았다. 자연스러운 정서 반응 데이터를 얻기 위해 선행 연구에서 이미 타당도와 효과성이 밝혀진 정서 유발 자극을 사용하였고, 110명의 대학생들에게 7가지 정서 유발 자극을 제시한 후 유발된 음성 반응을 녹음하여 분석에 사용하였다. 각 음성 데이터에서 추출한 파라미터들을 독립변인으로 하여 선형 판별 분석(LDA)으로 7가지 정서 범주를 분류하였고, 범주 분류의 한계를 극복하기 위해 단계별 다중회귀(stepwise multiple regression) 모형을 도출하여 4가지 정서 차원(valence, arousal, intensity, potency)을 가장 잘 예측하는 음성 특징 파라미터를 산출하였다. 7가지 정서 범주 판별율은 평균 62.7%이었고, 4 차원 예측 회귀모형들도 p<.001수준에서 통계적으로 유의하였다. 결론적으로, 본 연구 결과는 자연스러운 감정의 음성 반응을 분류하는데 유용한 파라미터들을 선정하여 정서의 범주와 차원적 접근으로 정서 분류 가능성을 보였으며 논의에 본 연구의 개선방향에 대해 기술하였다.
Speech with various emotions degrades the performance of the speaker recognition system. In this paper, a speaker recognition method using emotional adaptation has been proposed to improve the performance of speaker recognition system using affective speech. For emotional adaptation, emotional speaker model was generated from speaker model without emotion using a small number of training affective speech and speaker adaptation method. Since it is not easy to obtain a sufficient affective speech for training from a speaker, it is very practical to use a small number of affective speeches in a real situation. The proposed method was evaluated using a Korean database containing four emotions. Experimental results show that the proposed method has better performance than conventional methods in speaker verification and speaker recognition.
본 논문은 여러 가지 감정들 중에서 4가지 감정의 범주 즉, 중성, 두려움, 싫증 및 놀람을 포함한 음성과 감성이 결합되어진 얼굴의 표정을 좀 더 정확하고 자연스러운 3차원 모델로 만들 수 있는 FAES(a Facial Animation with Emotion and Speech) 시스템을 구축하는데 그 주된 목적이 있다. 이를 위해서 먼저 사용할 훈련자료를 추출하고 난후에 감성을 처리한 얼굴 애니메이션에서는 SVM(Support vector machine)[11]을 사용하여 4개의 감정을 수반한 얼굴 표정을 데이터베이스로 구축한다. 마지막으로 얼굴 표정에 감정과 음성이 표현되는 시스템을 개발하는 것이다. 얼굴 표정을 위해서 본 논문에서는 한국인 청년을 대상으로 이루어졌다. 이런 시스템을 통한 결과가 기존에 제시된 방법에 비해서 감정의 영역을 확대시킴은 물론이고 감정인지의 정확도가 약 7%, 어휘의 연속 음성인지가 약 5%의 향상을 시켰다.
최근 코로나19로 인한 비대면 서비스의 확산으로 온라인을 통한 소통이 증가하고 있다. 비대면 상황에서는 텍스트나 음성, 이미지 등의 모달리티를 통해 상대방의 의견이나 감정을 인식하고 있다. 현재 다양한 모달리티를 결합한 멀티모달 감정인식에 관한 연구가 활발하게 진행되고 있다. 그중 음성 데이터를 활용한 감정인식은 음향 및 언어정보를 통해 감정을 이해하는 수단으로 주목하고 있으나 대부분 단일한 음성 특징값으로 감정을 인식하고 있다. 하지만 대화문에는 다양한 감정이 복합적으로 존재하기 때문에 다중 감정을 인식하는 방법이 필요하다. 따라서 본 논문에서는 복합적으로 존재하는 내재된 감정인식을 위해 음성 데이터를 전처리한 후 특징 벡터를 추출하고 시간의 흐름을 고려한 다중 감정 회귀 모델을 제안한다.
지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.
This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features
본 논문에서는 고객의 불만관리 및 상담원의 상담품질 관리를 위한 고객센터 자동 모니터링 시스템에 대한 연구를 진행하였다. 제안된 시스템에서는 평상/화남의 2가지 감성에 대한 음성 감성인식 기술과 핵심어인식 기술을 사용하여 상담내역에 대한 보다 정확한 모니터링이 가능하고, 욕설, 성희롱 등의 언어폭력을 일삼는 고객에 대한 전문상담 및 관리가 가능하다. 서로 다른 환경에서 구축된 이종 음성 DB를 이용하여 불특정 고객들의 질의 음성에 안정적으로 동작할 수 있는 알고리즘을 개발하였으며, 실제 고객센터 상담내역 데이터를 이용하여 성능을 검증하였다.
본 논문은 분노, 행복, 평정, 슬픔, 놀람 등과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과로서, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.