• Title/Summary/Keyword: spectrum-sharing

Search Result 218, Processing Time 0.025 seconds

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

Large-Scale Joint Rate and Power Allocation Algorithm Combined with Admission Control in Cognitive Radio Networks

  • Shin, Woo-Jin;Park, Kyoung-Youp;Kim, Dong-In;Kwon, Jang-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we investigate a dynamic spectrum sharing problem for the centralized uplink cognitive radio networks using orthogonal frequency division multiple access. We formulate a large-scale joint rate and power allocation as an optimization problem under quality of service constraint for secondary users and interference constraint for primary users. We also suggest admission control to nd a feasible solution to the optimization problem. To implement the resource allocation on a large-scale, we introduce a notion of using the conservative factors $\alpha$ and $\beta$ depending on the outage and violation probabilities. Since estimating instantaneous channel gains is costly and requires high complexity, the proposed algorithm pursues a practical and implementation-friendly resource allocation. Simulation results demonstrate that the large-scale joint rate and power allocation incurs a slight loss in system throughput over the instantaneous one, but it achieves lower complexity with less sensitivity to variations in shadowing statistics.

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.

Design of a bluetooth-based interactive control network

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.922-925
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connection of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments. The bluetooth system supports both point-to-point connection and point-to-multipoint connections. In point-to-multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There is one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The Bluetooth standard has been suggested that Bluetooth equipments can be used in the short-range, maximum 100 meters . It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

  • PDF

Multi-Mode Precoding Scheme Based on Interference Channel in MIMO-Based Cognitive Radio Networks

  • Jung, Minchae;Hwang, Kyuho;Choi, Sooyong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.137-140
    • /
    • 2011
  • A precoding strategy is one of the representative interference management techniques in cognitive radio (CR) network which is a typical interference-limited environment. The interference minimization approach to precoding is an appropriate scheme to mitigate the interference efficiently while it may cause the capacity loss of the desired channel. The precoding scheme for the maximal capacity of the desired channel improves the capacity of the desired channel while it increases the interference power and finally causes the capacity loss of the interfered users. Therefore, we propose a precoding scheme which satisfies these two conflicting goals and manages the interference signal in such an interference-limited environment. The proposed scheme consists of two steps. First, the precoder nulls out the largest singular value of the interference channel to mitigate the dominant interference signal based on the interference minimization approach. Second, the transmitter calculates the sum capacities per mode and selects a mode to maximize the sum capacity. In the second step, each mode consists of the right singular vectors corresponding to the singular values except the largest singular value eliminated in the first step. Simulation results show that the proposed precoding scheme not only efficiently mitigate the interference signal, but also has the best performance in terms of the sum capacity in a MIMO-based CR network.

  • PDF

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].

Mode Detection and Synchronization for an OFDM-Based Cognitive Radio with Fractional Bandwidth Mode (부분대역모드를 지원하는 OFDM 기반 인지 라디오 시스템에서 모드 검출 및 동기 기법)

  • Won, Jae-Yeon;Kim, Yun-Hee;Hwang, Sung-Hyun;Um, Jung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1095-1101
    • /
    • 2007
  • For the cognitive radio (CR) systems sharing the spectrum with narrowband primary devices, this paper presents a fractional bandwidth (FBW) mode utilizing a variable portion of the system band to avoid the interference to or from the primary devices. For the method, the preamble and FBW mode detection algorithm are provided to obtain the FBW mode information during the synchronization. Simulation results in wireless regional area network (WRAN) environments reveal that the FBW mode can be detected reliably without any deterioration of the synchronization performance.

Bluetooth Network for Mobile System Control (이동 시스템 제어를 위한 블루투스 네트워크)

  • 임준홍;곽재혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1052-1057
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connectivity of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments, The bluetooth system both point-to point connection and point-to multipoint connection. In point-to multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The bluetooth standard ha s been suggested that bluetooth equipments can be used in the short-range, maximum 100 meters. It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

Realization of CAT Interface supporting Multitask (다중처리를 지원하는 CAT 인터페이스에 관한 연구)

  • 전동근;노승환;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1423-1436
    • /
    • 1992
  • In the paper, a CAT interface supporting multitask is realized. To interface a computer with measuring instruments, a GPIB card is designed and implemented. Controlling and displaying software using OOP and GUI are programmed with C++. A spectrum analyzer and a power meter are chosen as object instrument to be controlled. Total 9 modules are configured to manage the various resources and each module in integrated system. Also in case that several instruments are used, the system is realized to be capable of multitasking to exchange the data mutually. The multitasking is implemented under the time-sharing DOS environment. Thread-based method is used for processing, and Round Robin method for scheduling. Provided proper software modules for other object instruments are integrated, the system can control more measuring instruments simultaneously by the computer. Users can save the time and errors even without expert knowledge.

  • PDF

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.