본 연구에서는 단일 채널 단구간 진폭 스펙트럼 추정 기법의 하나인 Spectral Subtraction 방법과 2 채널 Griffiths-Jim Beamformer를 결합한 음성 강조기법을 제안한다. 기존의 단구간 진폭 스펙트럼 추정 기법에서는 관측된 신호의 스펙트럼에서 잡음의 평균 스펙트럼을 감산하여 잡음을 제거하고 있지만, 이 방법을 이용하여 잡음을 제거 할 경우에는 잡음 변동시 잡음 억제 능력이 미약하고, 목적 신호의 단구간 진폭 스펙트럼 추정 성능이 낮아진다는 단점을 갖고 있다. 그 이유는 실제 잡음의 스펙트럼은 평균값 주위에 분산되어 있기 때문이 다. 그러므로, 2 채널 Beamformer의 사각(Blocking Matrix)를 이용하여 분석 구간에서의 잡음의 단구간 진폭 스펙트럼을 추정하고, 이 추정된 값을 이용하여 목적 신호의 스펙트럼을 추정하는 기법을 제안하고, 컴퓨터 시뮬레이션을 통하여 그 유효성을 입증한다.
This paper addresses a novel noise-compensation scheme to solve the mismatch problem between training and testing condition for the automatic speech recognition (ASR) system, specifically in car environment. The conventional spectral subtraction schemes rely on the signal-to-noise ratio (SNR) such that attenuation is imposed on that part of the spectrum that appears to have low SNR, and accentuation is made on that part of high SNR. However, these schemes are based on the postulation that the power spectrum of noise is in general at the lower level in magnitude than that of speech. Therefore, while such postulation is adequate for high SNR environment, it is grossly inadequate for low SNR scenarios such as that of car environment. This paper proposes an efficient spectral subtraction scheme focused specifically to low SNR noisy environment by extracting harmonics distinctively in speech spectrum. Representative experiments confirm the superior performance of the proposed method over conventional methods. The experiments are conducted using car noise-corrupted utterances of Aurora2 corpus.
본 논문에서는 거리측정, 로그전력, 실효치 방법에 의하여 유성음, 무성음, 묵음 구간을 검출하여, 서브밴드 필터에 의한 잡음제거 알고리즘을 제안한다. 제안한 알고리즘은 각 프레임에서 서브밴드 필터를 사용하여 잡음으로 오염된 음성신호로부터 백색잡음 및 도로잡음의 스펙트럼을 차감하는 방법이다. 본 실험에서는 Aurora-2 데이터베이스에 포함된 음성신호와 잡음신호를 사용하여 스펙트럼 차감 알고리즘의 결과를 나타낸다. 잡음에 의하여 오염된 음성신호에 대하여 신호대잡음비를 사용하여 본 알고리즘이 유효하다는 것을 확인한다. 실험으로부터 백색잡음에 대하여 평균 2.1 dB, 도로잡음에 대하여 평균 1.91 dB의 출력 신호대잡음비가 개선된 것을 확인할 수 있었다.
This paper proposes a speech state-dependent spectral subtraction method to regulate the blind spectral subtraction for improved enhancement. In the proposed method, a modified subtraction rule is applied over the speech selectively contingent to the speech state being voiced or unvoiced, in an effort to incorporate the acoustic characteristics of phonemes. In particular, the objective of the proposed method is to remedy the subtraction induced signal distortion attained by two state-dependent procedures, spectrum sharpening and minimum spectral bound. In order to remove the residual noise, the proposed method employs a procedure utilizing the masking effect. Proposed spectral subtraction including state-dependent subtraction and residual noise reduction using the masking threshold shows effectiveness in compensation of spectral distortion in the unvoiced region and residual noise reduction.
본 논문에서는 잡음환경에서의 음성인식을 위하여 잡음의 확률적 특성과 음성모델을 이용하는 확률적 스펙트럼 차감법을 제안한다. 기존의 스펙트럼 차감법은 음성이 존재하지 않는 구간에서 추정한 잡음을 잡음음성에서 차감하여 잡음을 제거함로, 추정한 잡음의 형태가 음성인식기에 입력되는 잡음음성에 포함된 잡음과 상이한 특성을 나타낼 경우에는 효과적인 잡음의 제거가 불가능하다. 이러한 단점을 보완하기 위해서 여러 가지 형태를 가지는 잡음의 원형을 사용하여, 잡음음성에서 잡음을 제거하는 방법을 사용하였다. 잡음의 확률적인 특성을 여러 개의 잡음원형으로 나타내므로, 스펙트럼 차감법은 입력음성에 대해서 확률적으로 수행되어 잡음이 제거된 다중의 스펙트럼을 출력하게 되고, 인식시에는 조용한 환경의 음성으로 학습된 음성모델에 따른 최적의 스펙트럼을 이용하여 인식을 수행한다. 또한 정적인 파라미터와 동적인 특징파라미터를 동시에 고려하여 잡음을 영향을 최소화하므로 보다 효과적인 잡음처리가 가능하다. 제안한 방법의 타당성을 실험적으로 검증하기 위해서, 잡음환경의 음성인식에 적용하였다. SNR 10 dB인 50개의 고립단어에 대한 실험결과, 잡음처리를 하지 않았을 경우 72.75%, 스펙트럼 차감법은 80.25%, 제안한 방법을 사용하였을 경우는 86.25%의 인식률을 얻음으로써, 효과적인 잡음처리 방법임을 확인할 수 있었다.
본 연구는 자폐성 장애 학생들의 수판을 이용한 자연수의 수세기, 덧셈, 뺄셈의 지도 사례에 대한 분석을 바탕으로 장애 학생의 수와 연산 지도에 관한 시사점을 제공하고자 하였다. 이를 위해 일반학교의 특수학급에서 통합교육을 받는 4학년, 6학년의 자폐성 장애 학생을 대상으로 주당 1시간씩 30주간 수판을 사용하여 수세기, 덧셈, 뺄셈에 관한 수업을 실시하고 이를 분석하였다. 분석 결과를 바탕으로 다음과 같은 결론을 제시하였다. 자폐성 장애 학생들을 위한 수세기, 덧셈, 뺄셈의 지도에서 수의 구조가 드러나는 수판은 효과적인 교구이며, 수세기 전략과 연산 전략을 지도하는 것은 효율적인 지도 방안이 될 수 있고, 수학적 의사소통을 지도하는 것이 가능하다. 이러한 결과를 바탕으로 장애 학생의 수학 지도에 관한 시사점을 제시하였다.
Kendrick plots offer an alternative visualization of mass spectral data which reveals ion series and patterning by turning a mass spectrum into a map, plotting the fractional mass (wrongly called mass defect) as a function of mass-to-charge ratios and ion abundances. Although routinely used for polymer mass spectrometry, two unreported applications of these Kendrick plots are proposed using the program "kendo2": the graphical recalibration of a mass spectrum via the simulation of a theoretical fractional mass and a multi-segment fit; and the rapid evaluation of scan-to-scan variation of accurate mass measurements used as tolerances for the blank subtraction of UPLC-MS data files. Both applications are compatible with any type of high-resolution MS data including LC/GC-MS(/MS).
스펙트럼 차감법은 잡음이 더해진 환경에서의 음성인시기에 널리 사용되는 전처리 방법이지만, 이를 위해서는 잡음의 스펙트럼을 잘 추정할 필요가 있다. 본 논문에서는 잡음 스펙트럼의 추정방법으로 히스토그램 처리방법을 사용한다. 이 방법은 음성/비음성 구간의 구분을 할 필요가 없으며 서서히 변화하는 잡음의 스펙트럼도 추정할 수 있다는 점에서 여타의 잡음 추정방법에 비해 장점을 지닌다. 다양한 SNR 조건하에서 유색 가우시안 잡음 및 실제 자동차 소음을 부가시킨 음성에 대해 화자독립 고립단어 인식 실험을 수행한 결과, 히스토그램 처리방법에 기반을 둔 스펙트럼 차감법의 인식성능이 초기 비음성구간의 스펙트럼 평균을 이용한 기존의 잡음 스펙트럼 추정방법에 비해 우수한 성능을 나타내었다.
잡음환경에서의 음성인식 성능향상을 위해서는 서로 다른 잡음환경으로 인한 mismatch를 줄이는 것이 중요하다. 이를 위해 계산이 간단하고 잡음환경에서 비교적 우수한 성능을 내고 있는 스펙트럼 차감법이 널리 사용되고 있다. 본 논문에서는 스펙트럼 차감법을 적용하기 위한 잡음 스펙트럼 추정방법으로 히스토그램 처리방법을 도입한다. 히스토그램 처리방법은 음성이 아닌 구간의 검출이 필요없으며 시간에 따라 변화하는 시변잡음에도 적용 가능한 장점이 있다. 그러나 히스토그램 처리방법으로 신뢰도 높은 잡음 스펙트럼의 평균값을 추정하더라도 스펙트럼 차감법을 적용했을 때의 잔여 잡음의 문제가 발생한다. 이를 해결하기 위하여 잡음추정 과정에 사용되었던 히스토그램의 분포특성을 고려한 새로운 over-estimation 적용방식을 제안한다. 제안된 방식은 측정된 잡음의 분포에 따라 적응적으로 over-estimation의 정도를 결정함으로써 SNR 변화에 따른 영향이 적은 장점이 있다. 자동차 소음 환경에서의 화자독립 고립단어 인식실험 결과, 기존의 over-estimation factor를 적용한 경우보다 제안된 방식의 인식성능이 개선되었다.
In this paper, we propose a two-step noise compensation algorithm in feature extraction for achieving robust speech recognition. The proposed method frees us from requiring a priori information on noisy environments and is simple to implement. First, in frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it reduces the additive background noise and makes the shape of harmonics in speech spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector Normalization (FVN) to compensate for both the channel distortion and additive noise. The weighted variance FVN compensates for the variance mismatch in both the speech and the non-speech regions respectively. Representative performance evaluation using Aurora 2 database shows that the proposed method yields 27.18% relative improvement in accuracy under a multi-noise training task and 57.94% relative improvement under a clean training task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.