• 제목/요약/키워드: spectrum analysis

검색결과 4,125건 처리시간 0.028초

Enhanced Robust Cooperative Spectrum Sensing in Cognitive Radio

  • Zhu, Feng;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.122-133
    • /
    • 2009
  • As wireless spectrum resources become more scarce while some portions of frequency bands suffer from low utilization, the design of cognitive radio (CR) has recently been urged, which allows opportunistic usage of licensed bands for secondary users without interference with primary users. Spectrum sensing is fundamental for a secondary user to find a specific available spectrum hole. Cooperative spectrum sensing is more accurate and more widely used since it obtains helpful reports from nodes in different locations. However, if some nodes are compromised and report false sensing data to the fusion center on purpose, the accuracy of decisions made by the fusion center can be heavily impaired. Weighted sequential probability ratio test (WSPRT), based on a credit evaluation system to restrict damage caused by malicious nodes, was proposed to address such a spectrum sensing data falsification (SSDF) attack at the price of introducing four times more sampling numbers. In this paper, we propose two new schemes, named enhanced weighted sequential probability ratio test (EWSPRT) and enhanced weighted sequential zero/one test (EWSZOT), which are robust against SSDF attack. By incorporating a new weight module and a new test module, both schemes have much less sampling numbers than WSPRT. Simulation results show that when holding comparable error rates, the numbers of EWSPRT and EWSZOT are 40% and 75% lower than WSPRT, respectively. We also provide theoretical analysis models to support the performance improvement estimates of the new schemes.

레이저 유도 플라즈마 분광 기법을 이용한 용접 연강에서의 비접촉 강도 측정과 해석 (Non-contact Measurement and Analysis of Surface Hardness on Welding Steel using Laser-induced Breakdown Spectroscopy)

  • 김주한;고찬솔
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.141-148
    • /
    • 2014
  • In this work, effects of plasma on different hardness of welding steel using laser-induced breakdown spectroscopy were investigated. The ratios of ionic to atomic spectrum peaks were related to its material hardness. The major spectrum peak (Fe) and minor spectrum peak (Mn) were considered as monitoring elements. The stronger repulse plasma was generated, the harder material it was. The ratios of ionic to atomic spectrum peaks increased with respect to the material hardness as well. The correlation of minor spectrum peaks was stronger than that of major spectrum peaks. However, the major spectrum peaks indicated a similar trend, which could be used to estimate the hardness, too. Based on this result, the method could be used as a non-contact remote measurement of material properties.

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • 제41권2호
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.

복합구조물에 대한 비선형 직접스펙트럼법의 적용 (The Application of a Nonlinear Direct Spectrum Method for Mixed Building Structure)

  • 강병두;박진화;전대한;김재웅
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 2002
  • Most structures are expected deform nonlinear and inelastic behavior when subjected to strong ground motion. Nonlinear time history analysis(NTHA) is the most rigorous procedure to compute seismic performance in the various inelastic analysis methods. But nonlinear analysis procedures necessitate more reliable and practical tools for predicting seismic behavior of structures. Some building codes propose the capacity spectrum method. This method is the concept of an equivalent linear system, wherein a linear system having reduced stiffness and increased damping is used to estimate the response of the nonlinear system. This procedure are conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for mixed building structure.

  • PDF

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

발전소 배관계의 내진해석 (Seismic Analysis of Power Plant Piping System)

  • 김정현;이영신;김연환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2011
  • In this study, the seismic analysis of power plant piping system was performed using finite element model. This study was performed by ANSYS 12.1. For qualification of power plant piping system, the response spectrum analysis was performed using the given operating basis earthquake(OBE) and safe shutdown earthquake(SSE) floor response spectrum. The maximum stresses of power plant piping system were 166 MPa under OBE condition and 281 MPa under SSE condition. Thus, it can shown that the structural integrity of tpower plant piping system has a stable structure for seismic load conditions.

  • PDF

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

Early Diagnosis of ABCB11 Spectrum Liver Disorders by Next Generation Sequencing

  • Lee, Su Jeong;Kim, Jung Eun;Choe, Byung-Ho;Seo, An Na;Bae, Han-Ik;Hwang, Su-Kyeong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제20권2호
    • /
    • pp.114-123
    • /
    • 2017
  • Purpose: The goal of this study was the early diagnosis of ABCB11 spectrum liver disorders, especially those focused on benign recurrent intrahepatic cholestasis and progressive familial intrahepatic cholestasis. Methods: Fifty patients presenting neonatal cholestasis were evaluated to identify underlying etiologies. Genetic analysis was performed on patients suspected to have syndromic diseases or ABCB11 spectrum liver disorders. Two families with proven ABCB11 spectrum liver disorders were subjected to genetic analyses to confirm the diagnosis and were provided genetic counseling. Whole exome sequencing and Sanger sequencing were performed on the patients and the family members. Results: Idiopathic or viral hepatitis was diagnosed in 34%, metabolic disease in 20%, total parenteral nutrition induced cholestasis in 16%, extrahepatic biliary atresia in 14%, genetic disease in 10%, neonatal lupus in 2%, congenital syphilis in 2%, and choledochal cyst in 2% of the patients. The patient with progressive familial intrahepatic cholestasis had novel heterozygous mutations of ABCB11 c.11C>G (p.Ser4*) and c.1543A>G (p.Asn515Asp). The patient with benign recurrent intrahepatic cholestasis had homozygous mutations of ABCB11 c.1331T>C (p.Val444Ala) and heterozygous, c.3084A>G (p.Ala1028Ala). Genetic confirmation of ABCB11 spectrum liver disorder led to early liver transplantation in the progressive familial intrahepatic cholestasis patient. In addition, the atypically severe benign recurrent intrahepatic cholestasis patient was able to avoid unnecessary liver transplantation after genetic analysis. Conclusion: ABCB11 spectrum liver disorders can be clinically indistinguishable as they share similar characteristics related to acute episodes. A comprehensive genetic analysis will facilitate optimal diagnosis and treatment.