• Title/Summary/Keyword: spectroscopic techniques

Search Result 260, Processing Time 0.023 seconds

ORIGIN AND STATUS OF LOW-MASS CANDIDATE HYPERVELOCITY STARS

  • Yeom, Bum-Suk;Lee, Young Sun;Koo, Jae-Rim;Beers, Timothy C.;Kim, Young Kwang
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.57-69
    • /
    • 2019
  • We present an analysis of the chemical abundances and kinematics of six low-mass dwarf stars, previously claimed to be candidate hypervelocity stars (HVSs). We obtained moderate-resolution (R ~ 6000) spectra of these stars to estimate the abundances of several chemical elements (Mg, Si, Ca, Ti, Cr, Fe, and Ni), and derived their space velocities and orbital parameters using proper motions from the Gaia Data Release 2. All six stars are shown to be bound to the Milky Way, and in fact are not even considered high-velocity stars with respect to the Galactic rest frame. Nevertheless, we attempt to characterize their parent Galactic stellar components by simultaneously comparing their element abundance patterns and orbital parameters with those expected from various Galactic stellar components. We find that two of our program stars are typical disk stars. For four stars, even though their kinematic probabilistic membership assignment suggests membership in the Galactic disk, based on their distinct orbital properties and chemical characteristics, we cannot rule out exotic origins as follows. Two stars may be runaway stars from the Galactic disk. One star has possibly been accreted from a disrupted dwarf galaxy or dynamically heated from a birthplace in the Galactic bulge. The last object may be either a runaway disk star or has been dynamically heated. Spectroscopic follow-up observations with higher resolution for these curious objects will provide a better understanding of their origin.

Development of Estimation Indices for Refractory Organic Matter in the Han-River Basin using Organic Matter Parameters and Spectroscopic Characteristics (일반 유기물 항목과 분광특성을 이용한 한강수계 내 난분해성 물질 지표 제시)

  • Lee, Bomi;Lee, Tae-Hwan;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.625-633
    • /
    • 2011
  • A long-term water quality monitoring in the Han River Basin reveals a consistent increasing trend for the concentration of refractory organic matter (R-OM) in major monitoring sites of the watershed. Because the determination of R-OM concentrations typically requires a long time of microbial incubation, it is essential to present the estimation indices for R-OM for an efficient watershed management. In this study, a number of surface water samples were classified into three groups, each of which were collected from Lake Paldang, rivers at rain and non-rain events, respectively. The corresponding R-OM concentrations were correlated with biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) concentrations as well as ultraviolet and fluorescence intensities of the filtered samples. Among the traditional organic matter parameters, TOC exhibited the highest correlation coefficient with the R-OM concentrations regardless of the types of the sample groups. The equations for conversing TOC into R-OM concentrations were finally suggested as $0.43{\times}TOC+1.12$, $0.44{\times}TOC+0.61$, $0.24{\times}TOC+1.28$ for river samples at rain and non-rain events, and lake samples, respectively. TOC-BOD(C), the values of the TOC concentrations subtracted by carbon-converted BOD concentrations, was a good index for estimating the absolute concentrations of R-OM. UV absorbance at 254 nm was well correlated with R-OM concentrations of river samples while fluorescence intensities at 350 nm showed an excellent relationship with R-OM concentration of the lake samples. Our results suggests that simple spectroscopic parameters could be applied for in-situ monitoring tool techniques in watersheds.

Diverse Chemo-Dynamical Properties of Nitrogen-Rich Stars Identified from Low-Resolution Spectra

  • Changmin Kim;Young Sun Lee;Timothy C. Beers;Young Kwang Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.59-73
    • /
    • 2023
  • The second generation of stars in the globular clusters (GCs) of the Milky Way (MW) exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 < [Fe/H] < 0.0 from a sample of ~36,800 giant stars observed in the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, and present their dynamical properties. The N-rich population (NRP) and N-normal population (NNP) among our giant sample do not exhibit similarities in either in their metallicity distribution function (MDF) or dynamical properties. We find that, even though the MDF of the NRP looks similar to that of the MW's GCs in the range of [Fe/H] < -1.0, our analysis of the dynamical properties does not indicate similarities between them in the same metallicity range, implying that the escaped members from existing GCs may account for a small fraction of our N-rich stars, or the orbits of the present GCs have been altered by the dynamical friction of the MW. We also find a significant increase in the fraction of N-rich stars in the halo field in the very metal-poor (VMP; [Fe/H] < -2.0) regime, comprising up to ~20% of the fraction of the N-rich stars below [Fe/H] = -2.5, hinting that partially or fully destroyed VMP GCs may have in some degree contributed to the Galactic halo. A more detailed dynamical analysis of the NRP reveals that our sample of N-rich stars do not share a single common origin. Although a substantial fraction of the N-rich stars seem to originate from the GCs formed in situ, more than 60% of them are not associated with those of typical Galactic populations, but probably have extragalactic origins associated with Gaia Sausage/Enceladus, Sequoia, and Sagittarius dwarf galaxies, as well as with presently unrecognized progenitors.

Application of Infrared Spectroscopical Techniques for Investigation of Archaeological Woods (적외선(赤外線)(IR) 분광법(分光法)에 의한 고목재(古木材) 성상(性狀)의 심지(深知))

  • Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.3-9
    • /
    • 1988
  • Infrared (IR) spectroscopic techniques for the analysis of wood samples and the absorbance spectra of solid woods were presented. KBr pellets were prepared by throughly mixing approximately 300 mg of dried KBr and 1 mg of finely milled wood powder extracted with ethanol-cyclohexane previously. This mixture was made into a transparent disc by means of a pellet-making die (10 ton/$cm^2$ for 10 min). This IR techniques were applied for the analysis of archaeological wood samples. The most notable difference in the IR spectra between the recent and the archaeological waterlogged woods is that the absorption band centered at $1,730cm^{-1}$ was significantly diminished in the waterlogged ones. Total loss of absorption in $1,730cm^{-1}$ might be mainly due to the result of hemicellulose degradation. Another feature indicated by IR spectral comparision are that the degraded waterlogged wood samples showed 1) the increased intensity of the 1,600, 1,500 and $1,270cm^{-1}$ due to the residual lignin and the increased intensity at 1,470 and $1,425cm^{-1}$ due to the degradation of hemicellulose and 2) to the emergence of single band around $1,050cm^{-1}$ instead of three bands at 1,110, 1,060 and $1,040cm^{-1}$ in recent wood due to the degradation of cellulose crystalline. It was revealed from the IR examinations that the first change of wood in the waterlogged situation was the lysis of hemicellulose and the second the lysis of cellulose. It was also suggested that IR spectroscopy could serve a fast method for the investigation on the chemical characteristics of archaeological wood samples.

  • PDF

Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques (UV-Visible 흡수분광학법을 이용한 염산매질내 Pu 산화상태 측정)

  • Lee, Myung-Ho;Suh, Mu-Yeol;Park, Kyoung-Kyun;Park, Yeong-Jae;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with $NH_2OH$ HCl, and oxidized to Pu(IV) and Pu(VI) with $NaNO_2$ and $HClO_4$, respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with $NH_2OH$ HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 m and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-Vis absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  • PDF

Biological Control of Phytophthora Blight of Red-pepper Caused by Phytophthora capsici.;Ⅲ. Identification of the Antifungal Substances Produced by Pseudomonas sp. A - 183. (고추역병균(疫病菌)(Phytophthora capsici)의 생물학적(生物學的) 방제(防除);Ⅲ. 항균물질(抗菌物質)의 구조분석(構造分析))

  • Chang, Yoon-Hee;Jang, Sang-Moon;Choi, Jyung;Lee, Dong-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • This study was carried out to identify the three antifungal substances isolated from the culture medium of Pseudomonas sp. A-183 which is antagonistic against Phytophthora capsici. The substance A and B showed positive reactions at the Molish test and Anthrone test, but negative one at the Fehling test, strongly suggesting that both substance A and B had nonreducing sugar frameworks. The substance C only exhibited the phenomenon of the UV induced fluorescence. From the qualitative analysis with the spectroscopic techniques such as UV, Mass, IR and NMR, the substance A and B were known to be composed to sugar and fatty acid, and showed a base peak of 171(m/e). It was identified that substance A was $(2-O-L-rhamnosyl-{\alpha}-L-rhamnosyl-{\beta}-hydroxydecanoyl-{\beta}-hydroxy$ decanoic acid) and the substance B was $({\alpha}-L-rhamnosyl-{\beta}-hydroxydecanoyl-{\beta}-hydroxy$ decanoic acid). The substance C was identified as a phenazine from the results of qualitative analysis with the spectroscopic techniques such as UV, Mass, IR and NMR.

  • PDF

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Synthesis, characterization and spectral studies of various newer long chain aliphatic acid (2-hydroxy benzylidene and 1H-indol-3-ylmethylene) hydrazides as mosquito para-pheromones

  • Awasthi, Suman;Rishishwar, Poonam;Rao, Ambati N.;Ganesan, Kumaran;Malhotra, Ramesh Chandra
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.506-512
    • /
    • 2007
  • Various long chain aliphatic acid hydrazides react with aromatic and heterocyclic aldehydes in alcoholic medium in refluxing conditions to give corresponding 2-hydroxy benzylidene and 1H-indol-3-ylmethylene hydrazides, a newer class of mosquito para-pheromones. We describe here synthesis of various novel long chain aliphatic acid (2- hydroxy benzylidene and 1H-indol-3-ylmethylene) hydrazides by conventional as well as microwave irradiation techniques. The structures of these compounds have been confirmed by spectroscopic techniques (FTIR, NMR & MS). Some of the interesting features of the electron impact mass spectral fragmentation pattern of these compounds have also been discussed.

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.