DOI QR코드

DOI QR Code

ORIGIN AND STATUS OF LOW-MASS CANDIDATE HYPERVELOCITY STARS

  • Yeom, Bum-Suk (Department of Astronomy and Space Science, Chungnam National University) ;
  • Lee, Young Sun (Department of Astronomy and Space Science, Chungnam National University) ;
  • Koo, Jae-Rim (Department of Astronomy and Space Science, Chungnam National University) ;
  • Beers, Timothy C. (Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame) ;
  • Kim, Young Kwang (Department of Astronomy and Space Science, Chungnam National University)
  • Received : 2019.03.26
  • Accepted : 2019.05.17
  • Published : 2019.06.30

Abstract

We present an analysis of the chemical abundances and kinematics of six low-mass dwarf stars, previously claimed to be candidate hypervelocity stars (HVSs). We obtained moderate-resolution (R ~ 6000) spectra of these stars to estimate the abundances of several chemical elements (Mg, Si, Ca, Ti, Cr, Fe, and Ni), and derived their space velocities and orbital parameters using proper motions from the Gaia Data Release 2. All six stars are shown to be bound to the Milky Way, and in fact are not even considered high-velocity stars with respect to the Galactic rest frame. Nevertheless, we attempt to characterize their parent Galactic stellar components by simultaneously comparing their element abundance patterns and orbital parameters with those expected from various Galactic stellar components. We find that two of our program stars are typical disk stars. For four stars, even though their kinematic probabilistic membership assignment suggests membership in the Galactic disk, based on their distinct orbital properties and chemical characteristics, we cannot rule out exotic origins as follows. Two stars may be runaway stars from the Galactic disk. One star has possibly been accreted from a disrupted dwarf galaxy or dynamically heated from a birthplace in the Galactic bulge. The last object may be either a runaway disk star or has been dynamically heated. Spectroscopic follow-up observations with higher resolution for these curious objects will provide a better understanding of their origin.

Keywords

CMHHBA_2019_v52n3_57_f0001.png 이미지

Figure 1. Spectra of standard stars in the wavelength range used to derive stellar parameters and chemical abundances.

CMHHBA_2019_v52n3_57_f0002.png 이미지

Figure 2. Same as in Figure 1, but for our program stars.

CMHHBA_2019_v52n3_57_f0003.png 이미지

Figure 3. Differences (residuals) between estimated values and reference values for three stellar parameters of our comparison stars, as a function of S/N. The blue star symbol with an error bar indicates the median value and its median absolute deviation (MAD) calculated in each S/N range. There are four S/N ranges shown (< 50, 50 – 100, 100 – 150, and > 150), separated by the vertical dotted lines.

CMHHBA_2019_v52n3_57_f0004.png 이미지

Figure 4. Same as in Figure 3, but for the chemical abundances of Mg, Si, Ca, Ti, Cr, and Ni. Note that the lower number of points for S/N < 50 results from a lower number of abundance measurements, due to absorption features being too weak.

CMHHBA_2019_v52n3_57_f0005.png 이미지

Figure 5. Toomre diagram for our sample of stars. The blue symbols indicate the velocities calculated with the SDSS proper motions, while the red symbols are based on the Gaia DR2 proper motions. The black and red circles roughly represent the kinematic boundaries of the thin and thick disks, at a constant velocity of 70 km s−1 and 180 km s−1 (Venn et al. 2004), respectively. The blue line indicates the local Galactic escape speed of Vesc = 533 km s−1 (Piffl et al. 2014). The numbers besides each star are the sample ID used by Pal14.

CMHHBA_2019_v52n3_57_f0006.png 이미지

Figure 6. Projected orbits for our program stars over 2 Gyr from the present, in the planes spanned by Z and R (left panels) and X and Y (right panels), respectively. Z is the distance from the Galactic plane, while R is the distance from the Galactic center projected onto the Galactic plane. X and Y are based on the Cartesian reference system, in which the center of the Galaxy is located at (0, 0) kpc and the Sun is located at (X,Z) = (8.0, 0.0) kpc. A filled circle indicates the current location of a star.

CMHHBA_2019_v52n3_57_f0007.png 이미지

Figure 7. Abundance ratios of Mg, Si, Ca, Ti, Cr, and Ni, as a function of [Fe/H], for stars in the Galactic bulge (green triangles; Alves-Brito et al. 2010; Johnson et al. 2014), the thick disk (filled blue circles; Alves-Brito et al. 2010; Bensby et al. 2003; Reddy et al. 2006), the thin disk (red circles; Alves-Brito et al. 2010; Bensby et al. 2003; Reddy et al. 2006), the halo (filled orange squares; Alves-Brito et al. 2010; Reddy et al. 2006), and the LMC (black dots; Van der Swaelmen et al. 2013). Our program stars are displayed as red star symbols along their Pal14 IDs.

Table 1 Details of spectroscopic observations

CMHHBA_2019_v52n3_57_t0001.png 이미지

Table 2 Stellar parameters and chemical abundances of the comparison stars adopted from the literature

CMHHBA_2019_v52n3_57_t0002.png 이미지

Table 3 Stellar parameters and chemical abundances derived for our program stars

CMHHBA_2019_v52n3_57_t0003.png 이미지

Table 4 Proper motions of our program stars from different catalogs

CMHHBA_2019_v52n3_57_t0004.png 이미지

Table 5 Velocities and orbital parameters of our program stars

CMHHBA_2019_v52n3_57_t0005.png 이미지

Table 6 Possible origins of our program stars

CMHHBA_2019_v52n3_57_t0006.png 이미지

References

  1. Abadi, M. G., Navarro, J. F., & Steinmetz, M. 2009, An Alternative Origin for Hypervelocity Stars, ApJL, 691, L63 https://doi.org/10.1088/0004-637X/691/2/L63
  2. Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars, AJ, 136, 2070 https://doi.org/10.1088/0004-6256/136/5/2070
  3. Alves-Brito, A., Melendez, J., Asplund, M., et al. 2010, Chemical Similarities between Galactic Bulge and Local Thick Disk Red Giants: O, Na, Mg, Al, Si, Ca, and Ti, A&A, 513, 35 https://doi.org/10.1051/0004-6361/200913444
  4. Battistini, C., & Bensby, T. 2015, The Origin and Evolution of the Odd-Z Iron-Peak Elements Sc, V, Mn, and Co in the Milky Way Stellar Disk, A&A, 577, 9 https://doi.org/10.1051/0004-6361/201425327
  5. Beers, T. C., Carollo, D., Ivezic, Z., et al. 2012, The Case for the Dual Halo of the Milky Way, ApJ, 746, 34 https://doi.org/10.1088/0004-637X/746/1/34
  6. Beers, T. C., Chiba, M., Yoshii, Y., et al. 2000, Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample, AJ, 119, 2866 https://doi.org/10.1086/301410
  7. Bensby, T., Feltzing, S., & Lundstrom, I. 2003, Elemental Abundance Trends in the Galactic Thin and Thick Disks as Traced by Nearby F and G Dwarf Stars, A&A, 410, 527 https://doi.org/10.1051/0004-6361:20031213
  8. Bensby, T., Feltzing, S., & Lundstrom, I. 2005, ${\alpha}$-, r-, and s-Process Element Trends in the Galactic Thin and Thick Disks, A&A, 433, 185 https://doi.org/10.1051/0004-6361:20040332
  9. Blaauw, A. 1961, On the Origin of the O- and B-Type Stars with High Velocities (the "Run-Away" Stars), and Some Related Problems, BAN, 15, 265
  10. Boeche, C., & Grebel, E. K. 2016, SP Ace: a New Code to Derive Stellar Parameters and Elemental Abundances, A&A, 587, 2
  11. Boeche, C., Siebert, A., Williams, M., et al. 2011, The RAVE Catalog of Stellar Elemental Abundances: First Data Release, AJ, 142, 193 https://doi.org/10.1088/0004-6256/142/6/193
  12. Boubert, D., & Evans, N. W. 2016, A Dipole on the Sky: Predictions for Hypervelocity Stars from the Large Magellanic Cloud, ApJL, 825, L6 https://doi.org/10.3847/2041-8205/825/1/L6
  13. Boubert, D., Guillochon, J., Hawkins, K., et al. 2018, Revisiting Hypervelocity Stars after Gaia DR2, MNRAS, 479, 2789. https://doi.org/10.1093/mnras/sty1601
  14. Bovy, J. 2015, galpy: A Python Library for Galactic Dynamics, ApJs, 216, 29 https://doi.org/10.1088/0067-0049/216/2/29
  15. Bromley, B. C., Kenyon, S. J., Brown,W. R., & Geller, M. J. 2009, Runaway Stars, Hypervelocity Stars, and Radial Velocity Surveys, ApJ, 706, 925 https://doi.org/10.1088/0004-637X/706/2/925
  16. Brown, W. R. 2015, Hypervelocity Stars, ARA&A, 53, 15 https://doi.org/10.1146/annurev-astro-082214-122230
  17. Brown, W. R., Anderson, J., Gnedin, O. Y., et al. 2015, Proper Motions and Trajectories for 16 Extreme Runaway and Hypervelocity Stars, ApJ, 804, 49 https://doi.org/10.1088/0004-637X/804/1/49
  18. Brown, W. R., Geller, M. J., & Kenyon, S. J. 2014, MMT Hypervelocity Star Survey. III. The Complete Survey, ApJ, 787, 89 https://doi.org/10.1088/0004-637X/787/1/89
  19. Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, Discovery of an Unbound Hypervelocity Star in the Milky Way Halo, ApJ, 622, L33 https://doi.org/10.1086/429378
  20. Castelli, F., & Kurucz, R. L. 2003, Modelling of Stellar Atmospheres, ed. N. Piskunov, W.W. Weiss, and D.F. Gray (Published on behalf of the IAU by the ASP, 20)
  21. Cenarro, A. J., Peletier, R. F., Sanchez-Blazquez, P., et al. 2007, Medium-Resolution Isaac Newton Telescope Library of Empirical Spectra - II. The Stellar Atmospheric Parameters, MNRAS, 374, 664 https://doi.org/10.1111/j.1365-2966.2006.11196.x
  22. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), Res. Astron. Astrophys., 12, 1197 https://doi.org/10.1088/1674-4527/12/9/003
  23. Delgado Mena, E. G., Israelian, J. I., Gonzalez Hernandez, S. G., et al. 2014, Li Depletion in Solar Analogues with Exoplanets. Extending the Sample, A&A, 562, 92 https://doi.org/10.1051/0004-6361/201321493
  24. Freeman, K., & Bland-Hawthorn, J. 2002, The New Galaxy: Signatures of Its Formation, ARA&A, 40, 487 https://doi.org/10.1146/annurev.astro.40.060401.093840
  25. Fulbright, J. P. 2000, Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis, AJ, 120, 1841 https://doi.org/10.1086/301548
  26. Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, Gaia Data Release 2. Summary of the Contents and Survey Properties, A&A, 616, A1. https://doi.org/10.1051/0004-6361/201833051
  27. Gies, D. R. 1987, The Kinematical and Binary Properties of Association and Field O Stars, ApJS, 64, 545 https://doi.org/10.1086/191208
  28. Hawkins, K., & Wyse, R. F. G. 2018, The Fastest Travel Together: Chemical Tagging of the Fastest Stars in Gaia DR2 to the Stellar Halo, MNRAS, 481, 1028 https://doi.org/10.1093/mnras/sty2282
  29. Hills, J. G. 1988, Hyper-Velocity and Tidal Stars from Binaries Disrupted by a Massive Galactic Black Hole, Nature, 331, 687 https://doi.org/10.1038/331687a0
  30. Hogg, D. W., Blanton, M. R., Roweis, S. T., et al. 2005, Modeling Complete Distributions with Incomplete Observations: The Velocity Ellipsoid from Hipparcos Data, ApJ, 629, 268 https://doi.org/10.1086/431572
  31. Houk, N., & Swift, C. 2000, VizieR Online Data Catalog: Michigan Catalogue of HD stars, Vol. 5 (Houk+, 1999), VizieR Online Data Catalog, 3214
  32. Johnson, C. I., Rich, R. M., Kobayashi, C., Kunder, A., & Koch, A. 2014, Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge, AJ, 148, 67 https://doi.org/10.1088/0004-6256/148/4/67
  33. Kollmeier, J. A., & Gould, A. 2007, Where Are the Old-Population Hypervelocity Stars?, ApJ, 664, 343 https://doi.org/10.1086/518405
  34. Kollmeier, J. A., Gould, A., Knapp, G., & Beers, T. C. 2009, Old-Population Hypervelocity Stars from the Galactic Center: Limits from the Sloan Digital Sky Survey, ApJ, 697, 1543 https://doi.org/10.1088/0004-637X/697/2/1543
  35. Kurtz, M. J. & Mink, D. J. 1998, RVSAO 2.0: Digital Redshifts and Radial Velocities, PASP, 110, 934 https://doi.org/10.1086/316207
  36. Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, The UKIRT Infrared Deep Sky Survey (UKIDSS), MNRAS, 379, 1599 https://doi.org/10.1111/j.1365-2966.2007.12040.x
  37. Lee, Y. S., Beers, T. C., Prieto, C. A., et al. 2011, The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-element Abundance Ratios from Low-resolution SDSS/SEGUE Stellar Spectra, AJ, 141, 90 https://doi.org/10.1088/0004-6256/141/3/90
  38. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008a, The SEGUE Stellar Parameter Pipeline. I. Description and Comparison of Individual Methods, AJ, 136, 2022 https://doi.org/10.1088/0004-6256/136/5/2022
  39. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008b, The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters, AJ, 136, 2050 https://doi.org/10.1088/0004-6256/136/5/2050
  40. Li, Y., Luo, A., Zhao, G., et al. 2012, Metal-Poor Hypervelocity Star Candidates from the Sloan Digital Sky Survey, ApJL, 744, 24 https://doi.org/10.1088/0004-637X/744/1/24
  41. Li, Y.-B., Luo, A.-L., Zhao, G., et al. 2015, 19 Low Mass Hypervelocity Star Candidates from the First Data Release of the LAMOST Survey, Res. Astron. Astrophys., 15, 1364. https://doi.org/10.1088/1674-4527/15/8/018
  42. Mishenina, T. V., Pignatari, M., Korotin, S. A., Soubiran, C., et al. 2013, Abundances of Neutron-Capture Elements in Stars of the Galactic Disk Substructures, A&A, 552, 128 https://doi.org/10.1051/0004-6361/201220687
  43. Munn, J. A., Monet, D. G., Levine, S. E., et al. 2004, An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey, AJ, 127, 3034 https://doi.org/10.1086/383292
  44. Munn, J. A., Monet, D. G., Levine, S. E., et al. 2008, Erratum: "An Improved Proper-Motion Catalog Combining Usno-B and the Sloan Digital Sky Survey" (2004, AJ, 127, 3034), AJ, 136, 895 https://doi.org/10.1088/0004-6256/136/2/895
  45. Palladino, L. E., Schlesinger, K. J., Holley-Bockelmann, K., et al. 2014, Hypervelocity Star Candidates in the SEGUE G and K Dwarf Sample, ApJ, 780, 7
  46. Piffl, T., Scannapieco, C., Binney, J., et al. 2014, The RAVE Survey: the Galactic Escape Speed and the Mass of the Milky Way, A&A, 562, A91 https://doi.org/10.1051/0004-6361/201322531
  47. Poveda, A., Ruiz, J., & Allen, C. 1967, Run-away Stars as the Result of the Gravitational Collapse of Protostellar Clusters, Boletin de los Observatorios Tonantzintla y Tacubaya, 4, 86
  48. Prugniel, Ph., Vauglin, I., & Koleva, M. 2011, The Atmospheric Parameters and Spectral Interpolator for the MILES Stars, A&A, 531, 165 https://doi.org/10.1051/0004-6361/201116769
  49. Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, Elemental Abundance Survey of the Galactic Thick Disc, MNRAS, 367, 1329 https://doi.org/10.1111/j.1365-2966.2006.10148.x
  50. Sneden, C. 1973, Carbon and Nitrogen Abundances in Metal-Poor Stars, PhD thesis, Univ. Texas at Austin
  51. Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, The Radial Velocity Experiment (RAVE): First Data Release, AJ, 132, 1645 https://doi.org/10.1086/506564
  52. Stone, R. C. 1991, The Space Frequency and Origin of the Runaway O and B Stars, AJ, 102, 333 https://doi.org/10.1086/115880
  53. Takeda, Y., & Honda, S. 2005, Photospheric CNO Abundances of Solar-Type Stars, PASJ, 57, 65 https://doi.org/10.1093/pasj/57.1.65
  54. Tauris, T. M. 2015, Maximum Speed of Hypervelocity Stars Ejected from Binaries, MNRAS, 448, 6 https://doi.org/10.1093/mnrasl/slu189
  55. Tauris, T. M., Takens, R. J. 1998, Runaway Velocities of Stellar Components Originating from Disrupted Binaries via Asymmetric Supernova Explosions, A&A, 330, 1047
  56. Tetzlaff, N., Neuhauser, R., & Hohle, M. M. 2011, A Catalogue of Young Runaway Hipparcos Stars within 3 kpc from the Sun, MNRAS, 410, 190 https://doi.org/10.1111/j.1365-2966.2010.17434.x
  57. Tinsley, B. M. 1979, Stellar Lifetimes and Abundance Ratios in Chemical Evolution, ApJ, 229, 1046 https://doi.org/10.1086/157039
  58. Van der Swaelmen, M., Hill, V., Primas, F., et al. 2013, Chemical Abundances in LMC Stellar Populations. II. The Bar Sample, A&A, 560, A44 https://doi.org/10.1051/0004-6361/201321109
  59. Venn, K. A., Irwin, M., Shetrone, M. D., Tout, C. A., Hill, V., Tolstoy, E. 2004, Stellar Chemical Signatures and Hierarchical Galaxy Formation, AJ, 128, 1177 https://doi.org/10.1086/422734
  60. Watkins, L. L., Evans, N.W., & An, J. H. 2010, The Masses of the Milky Way and Andromeda Galaxies, MNRAS, 406, 264 https://doi.org/10.1111/j.1365-2966.2010.16708.x
  61. Xue, X. X., Rix, H. W., Zhao, G., et al. 2008, The Milky Way's Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of -2400 SDSS Blue Horizontal-Branch Stars, ApJ, 684, 1143 https://doi.org/10.1086/589500
  62. Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, SEGUE: A Spectroscopic Survey of 240,000 Stars with g = 14-20, AJ, 137, 4377 https://doi.org/10.1088/0004-6256/137/5/4377
  63. York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513
  64. Yu, Q., & Tremaine, S. 2003, Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center, ApJ, 599, 1129 https://doi.org/10.1086/379546
  65. Zhong, J., Chen, L., Liu, C., et al. 2014, The Nearest High-velocity Stars Revealed by LAMOST Data Release 1, ApJL, 789, L2 https://doi.org/10.1088/2041-8205/789/1/L2
  66. Ziegerer, E., Volkert, M., Heber, U., et al. 2015, Candidate Hypervelocity Stars of Spectral Type G and K Revisited, A&A, 576, 14