• Title/Summary/Keyword: spectral times

Search Result 435, Processing Time 0.024 seconds

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

Compensation of Distorted WDM signals due to Cross Phase Modulation Effects using Mid-Span Spectral Inversion (상호 위상 변조에 의해 왜곡된 WDM 신호의 Mid-Span Spectral Inversion을 이용한 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.128-134
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation (SPM) and cross phase modulation (XPM) as a function of transmission length using mid-span spectral inversion (MSSI) compensation method. The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system. This system has highly nonlinear dispersion shifted fiber (HNL-DSF) as a nonlinear medium in optical phase conjugator (OPC). We confirmed that the transmission length is more increased by applying MSSI to distorted signal due to chromatic dispersion, SPM and XPM as dispersion coefficient of fiber becomes higher. And the compensation degree of distorted WDM channels due to chromatic dispersion, SPM and XPM becomes better stable as dispersion coefficient of fiber becomes higher.

  • PDF

Cross Phase Modulation Effects on 120 Gbps WDM Transmission Systems with Mid-Span Spectral Inversion for Compensation of Distorted Optical Pulse (광 펄스 왜곡의 보상을 위해 Mid-Span Spectral Inversion 기법을 채택한 120 Gbps WDM 시스템에서 채널간 상호 위상 변조 현상의 영향)

  • 이성렬;권순녀;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.741-749
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM). The considered system is 120 Gbps (3${\times}$40 Gbps) intensity modulation direct detection(IM/DD) WDM transmission system with path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium in optical phase conjugator(OPC). We use 1 dB eye opening peralty(EOP) in order to evaluate the characteristics of compensation for distorted WDM channels. We confirmed that improvement of transmission distance and performance is achieved by MSSI method to distorted long-haul IM/DD WDM channels due to chromatic dispersion, SPM and XPM. And in the aspect of compensation for distorted pulse due to XPM, the MSSI method is effective to IM/DD WDM transmission system with high fiber dispersion coefficient.

Near-Infrared Spectral Characteristics in Presence of Sun Glint Using CASI-1500 Data in Shallow Waters

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.281-291
    • /
    • 2015
  • Sun glint correction methods of hyperspectral data that have been developed so far have not considered the various situations and are often adequate for only certain conditions. Also there is an inaccurate assumption that the signal in NIR wavelength is zero. Therefore, this study attempts to analyze the NIR spectral properties of sun glint effect in coastal waters. For the analysis, CASI-1500 airborne hyperspectral data, bathymetry data and in-situ data obtained at coastal area near Sin-Cheon, Jeju Island, South Korea were used. The spectral characteristics of radiance and reflectance at the five NIR wavelengths (744 nm, 758 nm, 772 nm, 786 nm, and 801 nm) are analyzed by using various statistics, spatial and spectral variation of sun-glinted area under conditions of the bottom types of benthos, barren rocks and sand with similar water depth. Through the quantitative analysis, we found that the relation of water depth or bottom type with sun glint is relatively less which is a similar result with the previous studies. However the sun glint are distributed similarly with the patterns of the direction of wave propagation. It is confirmed that the areas with changed direction of wave propagation were not affected by the sun glint. The spatial and spectral variations of radiance and reflectance are mainly caused by the effect of sun glint and waves. The radiance or reflectance of more sun-glinted areas are increased approximately 1.5 times and the standard deviations are also increased three times compared to the less sun glinted areas. Through this study, the further studies of sun glint correction method in coastal water using the patterns of wave propagation and diffraction will be placed.

DYNAMICAL CHARACTERISTICS OF THE QUIET TRANSITION REGION: SPATIAL CORRELATION STUDIES OF H I 931 AND S VI 933 UV LINES

  • YUN HONG SIK;CHAE JONG CHUL;POLAND A. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 1998
  • To understand the basic physics underlying large spatial fluctuations of intensity and Doppler shift, we have investigated the dynamical charctersitics of the transition region of the quiet sun by analyzing a raster scan of high resolution UV spectral band containing H Lyman lines and a S VI line. The spectra were taken from a quiet area of $100'\times100'$ located near the disk center by SUMER on board SOHO. The spectral band ranges from 906 A to 950 A with spatial and spectral resolution of 1v and $0.044 {\AA}$, respectively. The parameters of individual spectral lines were determined from a single Gaussian fit to each spectral line. Then, spatial correlation analyses have been made among the line parameters. Important findings emerged from the present analysis are as follows. (1) The integrated intensity maps of the observed area of H I 931 line $(1\times10^4 K)$ and S VI 933 line $(2\times10^5 K)$ look very smilar to each other with the same characterstic size of 5". An important difference, however, is that the intensity ratio of brighter network regions to darker cell regions is much larger in S VI 933 line than that in H I 931 line. (2) Dynamical features represented by Doppler shifts and line widths are smaller than those features seen in intensity maps. The features are found to be changing rapidly with time within a time scale shorter than the integration time, 110 seconds, while the intensity structure remains nearly unchanged during the same time interval. (3) The line intensity of S VI is quite strongly correlated with that of H I lines, but the Doppler shift correlation between the two lines is not as strong as the intensity correlation. The correlation length of the intensity structure is found to be about 5.7' (4100 km), which is at least 3 times larger than that of the velocity structure. These findings support the notion that the basic unit of the transition region of the quiet sun is a loop-like structure with a size of a few $10^3 km$, within which a number of unresolved smaller velocity structures are present.

  • PDF

NDT Determination of Cement Mortar Compressive Strength Using SASW Technique

  • Cho, Young-Sang
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2001
  • The spectral analysis of surface waves (SASW) method, which is an in-situ seismic technique, has mainly been developed and used for many years to determine the stiffness profile of layered media (such as asphalt concrete and layered soils) in an infinite half-space. This paper presents a modified experimental technique for nondestructive evaluation of in-place cement mortar compressive strength in single-layer concrete slabs of rather a finite thickness through a correlation to surface wave velocity. This correlation can be used in the quality control of early age cement mortar structures and in evaluating the integrity of structural members where the infinite half space condition is not met. In the proposed SASW field test, the surface of the structural members is subjected to an impact, using a 12 mm steel ball, to generate surface wave energy at various frequencies. Two accelerometer receivers detect the energy transmitted through the medium. By digitizing the analog receiver outputs, and recording the signals for spectral analysis, surface wave velocities can be identified. Modifications to the SASW method includes the reduction of boundary reflections as adopted on the surface waves before the point where the reflected compression waves reach the receivers. In this study, the correlation between the surface wave velocity and the compressive strength of cement mortar is developed using one 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slab of 2,000 psi (140 kgf/$\textrm{cm}^2$) and two 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slabs of 3,000 psi (210 kgf/$\textrm{cm}^2$).

  • PDF

The Spectral Sensitization and the Photographic Characteristics of Sensitizing Dye for Photographic Emulsion (사진유제용 증감색소의 분광증감과 사진특성)

  • Kim, Yeoung-Chan;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.87-98
    • /
    • 1996
  • In this study, benzoxazolo carbocyanine dye was used as sensitizer for photographic emulsion, and the photographic characteristics were examined. The basic properties of sensitizer such as stability in various solvents were examined. The sensitizer was very stable in methanol, acetonitrile, acetone, dimethylformamide, and chloroform solution. Absorption spectra of benzoxazolo carbocyanine dye $2.5{\times}10^{-6}M$ and $5{\times}10^{-6}M$ concentrations in 10% aqueous methanol solutions containing $10^{-2}M$ potassium chloride show the monomer-J-aggregation characteristics. Compared to the absorption peak of the monomer in pure methanol solution, the red shifts of the monomer-J-aggregate peaks of benzoxazolo carbocyanine dye of $2.5{\times}10^{-6}M$ and $5{\times}10^{-6}M$ concentrations in 10% aqueous methanol solutions containing $10^{-2}M$ potassium chloride are 34nm respectively, and the sensitizing peak of benzoxazolo carbocyanine dye in photographic emulsion has red shift of 34nm. Therefore, if was concluded that benzoxazolo carbocyanine dye can be used as green sensitizing dye for the spectral sensitization of photographic emulsion.

Korean Digit Recognition Under Noise Environment Using Spectral Mapping Training (스펙트럼사상학습을 이용한 잡음환경에서의 한국어숫자음인식)

  • Lee, Ki-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.25-32
    • /
    • 1994
  • This paper presents the Korean digit recognition method under noise environment using the spectral mapping training based on static supervised adaptation algorithm. In the presented recognition method, as a result of spectral mapping from one space of noisy speech spectrum to another space of speech spectrum without noise, spectral distortion of noisy speech is improved, and the recognition rate is higher than that of the conventional method using VQ (vector quatization) and DTW(dynamic time warping) without noise processing, and even when SNR level is 0dB, the recognition rate is 10 times of that using the conventional method. It has been confirmed that the spectral mapping training has an ability to improve the recognition performance for speech in noise environment.

  • PDF

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Sub-Micrometer-Sized Spectrometer by Using Plasmonic Tapered Channel-Waveguide

  • Lee, Da Eun;Lee, Tae-Woo;Kwon, Soon-Hong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.788-792
    • /
    • 2014
  • It has been a critical issue to reduce the size of spectrometers in many fields such as on-chip chemical and biological sensing. The proposed plasmonic channel-waveguide with a sub-micrometer width has a cutoff frequency which enables us to control wavelength dependent propagation properties. We focused on the capability of the waveguide for spectral-to-spatial mapping when the waveguide width changes gradually. In this paper, we propose a plasmonic tapered channel-waveguide structure as a compact spectrometer with a physical size of $0.24{\times}2.0{\times}0.20{\mu}m^3$. The scattering point just above the tapered waveguide moves linearly depending on the wavelength of the injecting light. The spectral-to-spatial mapping can be improved by increasing the tapered length.