Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.6.788

Sub-Micrometer-Sized Spectrometer by Using Plasmonic Tapered Channel-Waveguide  

Lee, Da Eun (Department of Physics, Chung-Ang University)
Lee, Tae-Woo (Department of Physics, Chung-Ang University)
Kwon, Soon-Hong (Department of Physics, Chung-Ang University)
Publication Information
Journal of the Optical Society of Korea / v.18, no.6, 2014 , pp. 788-792 More about this Journal
Abstract
It has been a critical issue to reduce the size of spectrometers in many fields such as on-chip chemical and biological sensing. The proposed plasmonic channel-waveguide with a sub-micrometer width has a cutoff frequency which enables us to control wavelength dependent propagation properties. We focused on the capability of the waveguide for spectral-to-spatial mapping when the waveguide width changes gradually. In this paper, we propose a plasmonic tapered channel-waveguide structure as a compact spectrometer with a physical size of $0.24{\times}2.0{\times}0.20{\mu}m^3$. The scattering point just above the tapered waveguide moves linearly depending on the wavelength of the injecting light. The spectral-to-spatial mapping can be improved by increasing the tapered length.
Keywords
Nanophotonics; Plasmonics; Compact spectrometer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Leong and J. Guo, "A surface plasmon resonance spectrometer using a super-period metal nanohole array," Opt. Express 20, 21318-21323 (2012).   DOI
2 B. Redding, S. F. Liew, R. Sarma, and H. Cao, "Compact spectrometer based on a disordered photonic chip," Nat. Photonics 7, 746-751 (2013).   DOI
3 M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, "Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity," Nano Lett. 9, 4078-4082 (2009).   DOI   ScienceOn
4 J.-H. Kang, H.-G. Park, and S.-H. Kwon, "Room-temperature high-Q channel-waveguide surface plasmon nanocavity," Opt. Express 19, 13892-13898 (2011).   DOI
5 S.-H. Kwon, "Ultrasmall plasmonic cavity for chemical sensing," Plasmonic 8, 963 (2013).   DOI   ScienceOn
6 P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).   DOI
7 S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuators A 92, 88-95 (2001).   DOI   ScienceOn
8 T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).   DOI   ScienceOn
9 B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, "Integrated photonic crystal spectrometers for sensing applications," Opt. Commun. 282, 3168-3171 (2009).   DOI   ScienceOn
10 S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, "Planar waveguide Echelle gratings in silica-onsilicon," IEEE Photonics 16, 503-505 (2004).   DOI   ScienceOn
11 B. B. C. Kyotoku, L. Chen, and M. Lipson, "Sub-nm resolution cavity enhanced micro-spectrometer," Opt. Express 18, 102-107 (2010).   DOI
12 Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, "High resolution on-chip spectroscopy based on miniaturized microdonut resonators," Opt. Express 19, 12356-12364 (2011).   DOI
13 P. Cheben, J. H. Schmid, A. Delage, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Express 15, 2299-2306 (2007).   DOI