• Title/Summary/Keyword: spectral study

Search Result 2,779, Processing Time 0.03 seconds

Study on concrete surface damage using hyper-spectral remote sensing

  • Nakajima, Takashi;Endo, Takahiro;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1055-1057
    • /
    • 2003
  • In this research, the concrete with paint film was classified using hyper-spectral remote sensing. First, spectral characteristics of concrete and concrete with some kinds of paint films were investigated with a spectrometer. Second, using reflectance and first order derivative, spectral characteristics of the normal concrete and the concrete with paint film were classified. By using hyper-spectral remote sensing, not only extraction of crack but also inspection of paint film distribution is possible.

  • PDF

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

A Study of Acoustic Measurement in Connected Speech with Dysphonia (음성장애 연속구어의 음향학적 분석)

  • Lee, Myoung-Soon
    • Phonetics and Speech Sciences
    • /
    • v.3 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • The purposes of this study were to identify acoustic parameters of connected speech and to contribute to acoustic analysis of dysphonic voice about patient's natural speech voice as well as sustained phonation of vowels. Acoustic parameters of sentences included LTAS (long-term average spectrum) mean and spectral slope over frequence ranges such as 0-4kHz, 0-6kHz, 0-8kHz, 0-12.5kHz as well as HNR. Acoustic parameters of the vowel 'a' included jitter, RAP, shimmer, NHR, and HNR. Based on 'G' of GRBAS for the severity of dysphonia, two experienced raters judged and classified as four groups including controls, mild, moderate and severe dysphonic group. Connected speech was two sentences extracted from 'stroll' passage. Parameters of the vowel and LTAS mean of the sentences were measured by CSL. The spectral slope of the sentences and HNR of the vowel and the sentences were measured by Praat. Data were statistically analyzed by Spearman correlation and Kruskal-Wallis test using SPSS 12.0. The results of this study are as follows: First, jitter, RAP, shimmer and NHR were significantly different between the groups. Second, for several frequencies, LTAS mean and spectral slope of the sentences were significantly different between the groups. Third, the HNR of the sentences were significantly different between the groups. Forth, there was a presence of correlation between HNR and NHR of the vowel and HNR of the sentences. Accordingly, this study concluded that LTAS, spectral slope, and HNR were predictive parameters of connected speech voice for dysphonic voice.

  • PDF

Korean ESL Learners' Perception of English Segments: a Cochlear Implant Simulation Study (인공와우 시뮬레이션에서 나타난 건청인 영어학습자의 영어 말소리 지각)

  • Yim, Ae-Ri;Kim, Dahee;Rhee, Seok-Chae
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.91-99
    • /
    • 2014
  • Although it is well documented that patients with cochlear implant experience hearing difficulties when processing their first language, very little is known whether or not and to what extent cochlear implant patients recognize segments in a second language. This preliminary study examines how Korean learners of English identify English segments in a normal hearing and cochlear implant simulation conditions. Participants heard English vowels and consonants in the following three conditions: normal hearing condition, 12-channel noise vocoding with 0mm spectral shift, and 12-channel noise vocoding with 3mm spectral shift. Results confirmed that nonnative listeners could also retrieve spectral information from vocoded speech signal, as they recognized vowel features fairly accurately despite the vocoding. In contrast, the intelligibility of manner and place features of consonants was significantly decreased by vocoding. In addition, we found that spectral shift affected listeners' vowel recognition, probably because information regarding F1 is diminished by spectral shifting. Results suggest that patients with cochlear implant and normal hearing second language learners would experience different patterns of listening errors when processing their second language(s).

A Research on Response Time and Identification of English High Back Vowels (영어 후위고설모음들의 반응시간과 인식에 대한 연구)

  • Yun, Yung-Do
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • This study investigates how American English high back vowels are identified. American English and Korean speakers participated in a phonetic experiment for this study. This study shows their response times of the vowels and discusses how the speakers identified them. For the experiment I used a synthesized vowel continuum between American English /u/ and /$\mho$/based on American English male speakers' voice obtained by Peterson and Barney (1952). I manipulated spectral steps and vowel duration of the stimuli. The statistical results showed that American English speakers were not able to distinguish the stimuli based on spectral quality. Instead they relied on vowel duration. This suggests that the American English high back vowels have changed since Peterson and Barney recorded them in 1952. The Korean speakers also relied on vowel duration, not spectral quality since they could not distinguish them. American speakers' response times of these vowels were not affected by both spectral quality and vowel duration. Koreans' response times were affected by vowel durations only.

  • PDF

Comparison of Image Fusion Methods to Merge KOMPSAT-2 Panchromatic and Multispectral Images (KOMPSAT-2 전정색영상과 다중분광영상의 융합기법 비교평가)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.39-54
    • /
    • 2012
  • The objective of this study is to propose efficient data fusion techniques feasible to the KOMPSAT-2 satellite images. The most widely used image fusion techniques, which are the high-pass filter (HPF), the intensity-hue-saturation-based (modified IHS), the pan-sharpened, and the wavelet-based methods, was applied to four KOMPSAT - 2 satellite images having different regional and seasonal characteristics. Each fusion result was compared and analyzed in spatial and spectral features, respectively. Quality evaluation of image fusion techniques was performed in both quantitative and visual analysis. The quantitative analysis methods used for this study were the relative global dimensional error (spatial and spectral ERGAS), the spectral angle mapper index (SAM), and the image quality index (Q4). The results of quantitative and visual analysis indicate that the pan-sharpened method among the fusion methods used for this study relatively has the suitable balance between spectral and spatial information. In the case of the modified IHS method, the spatial information is well preserved, while the spectral information is distorted. And also the HPF and wavelet methods do not preserve the spectral information but the spatial information.

The Ship Detection Using Airborne and In-situ Measurements Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 항공관측 및 현장자료를 활용한 선박탐지)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Foucher, Pierre-Yves;Jang, Jae-Cheol;Lee, Moonjin;Kim, Tae-Sung;Kang, Won-Soo
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.535-545
    • /
    • 2017
  • Maritime accidents around the Korean Peninsula are increasing, and the ship detection research using remote sensing data is consequently becoming increasingly important. This study presented a new ship detection algorithm using hyperspectral images that provide the spectral information of several hundred channels in the ship detection field, which depends on high resolution optical imagery. We applied a spectral matching algorithm between the reflection spectrum of the ship deck obtained from two field observations and the ship and seawater spectrum of the hyperspectral sensor of an airborne visible/infrared imaging spectrometer. A total of five detection algorithms were used, namely spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), and spectral information divergence (SID). SDS showed an error in the detection of seawater inside the ship, and SAM showed a clear classification result with a difference between ship and seawater of approximately 1.8 times. Additionally, the present study classified the vessels included in hyperspectral images by presenting the adaptive thresholds of each technique. As a result, SAM and SID showed superior ship detection abilities compared to those of other detection algorithms.

Spectral Reflectivity on Geological Materials in Yangsan-Dongrae Fault Area (양산-동래 단층 지역의 암석에 대한 분광학적 연구)

  • 姜必鍾;智光薰
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1987
  • The study was performed to recognize the most preferable spectral chennels for discriminating geological materials using the portable radiometer. The portable radiometer covers the visible and short infrared regions from approximately 0.4 to 2.5 microns which are coincided with Landsat TM, and the rock samples used for the study are pyrophylites, andesites, granite, granodiorite and silicified sedimentary rocks which are collected in Yangsan-Dongrae fault area. The analysis of the rock sample provides a preliminary basis for determining the wavelength regions showing diagnostic spectral features and for discriminating hydrothermal altered rocks from the unaltered rocks. The measurement of spectral of spectral reflectance for the rock samples was carried out in the laboratory which environment condition such as temperature, light sources, and humidity are constant. The analysis of the measured data was based on correlation between the reflectance value of the rock samples, and the follow discriptions are output of the study. 1) Pyrophyllite shows absorption at 0.83 $\mu\textrm{m}$ due to the oxidation of pyrite, and absorption at 2.22 $\mu\textrm{m}$ due to OH. 2) The altered rocks have generally higher reflectance than the unaltered rocks. 3) The ratio mesurement of pyrophyllites shows strong absorption at band 5/6 and band 6/4(in Landsat TM 5/7, 7/4). The ratio 1/5(Landsat TM 1/5) may be useful to discriminate andesite from the granite.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.