• 제목/요약/키워드: spectral study

검색결과 2,799건 처리시간 0.031초

Characteristics of Spectral Reflectance in Tidal Flats

  • Ryu, Joo-Hyung;Na, Young-Ho;Choi, Jong-Kook;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.734-738
    • /
    • 2002
  • We present spectral characteristics of tidal flat sediments and algal mat that were tested in the Gomso and Saemangum tidal flats, Korea. The objective of this study is to investigate the spectral reflectance and the radar scattering modeling in the tidal flats. Ground truth data obtained in the tidal flats include grain size, soil moisture content and its variation with time, surface roughness, chlorophyll, ground leveling, and field spectral reflectance measurement. The concept of an effective exposed area (EEA) is introduced to accommodate the effect of remnant surface water, and it seriously affects the reflection of short wavelength infrared and microwave. The nin size of 0.0625 mm has been normally used as a critical size of mud and sand discrimination. But we propose here that 0.25 mm is more practical grain size criterion to discriminate by remote sensing. Algal mat is the primary product in tidal flats, and it is found to be very important to understand spectral characteristics for tidal flat remote sensing. We have also conducted radar scattering modeling, and showed L-band HV-polarization would be the most effective combination.

  • PDF

Study on spectral indices for crop growth monitoring

  • Zhang, Xia;Tong, Qingxi;Chen, Zhengchao;Zheng, Lanfeng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1400-1402
    • /
    • 2003
  • The objective of this paper is to determine the suitable spectral bands for monitoring growth status change during a long period. The long-term ground-level reflectance spectra as well as LAI and biomass were obtained in xiaotangshan area, Beijing, 2001. The narrow-band NDVI type spectral indices by all possible two bands were calculated their correlation coefficients R$^2$ with biomass and LAI. The best NDVIs must have higher R$^2$ with both biomass and LAI. The reasonable band centers and band widths were determined by a systematically increasing bandwidth centered over a wavelength. In addition, the first 19 bands of MODIS were simulated and investigated. Each developed spectral indices was then validated by the biomass and LAI time series using the generalized vector angle. It turned out that six new NDVI type indices within 750-1400nm were developed. NDVI(811_10,957_10) and NDVI(962_10,802_10) performed best. No satisfactory conventional NDVI formed by red and NIR bands were found effective. MODIS_NDVI(band19, band17) and MODIS_NDVI(band19, band2) were much better than MODIS_NDVI(band2,band1) for growth monitoring.

  • PDF

FIR/IIR Lattice 필터의 설계를 위한 Circulant Matrix Factorization을 사용한 Spectral Factorization에 관한 연구 (Study of Spectral Factorization using Circulant Matrix Factorization to Design the FIR/IIR Lattice Filters)

  • 김상태;박종원
    • 한국정보통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.437-447
    • /
    • 2003
  • Circulant Matrix Factorization (CMF)는 covariance 행렬의 spectral factorization된 결과를 얻을 수 있다. 우리는 얻어진 결과를 가지고 일반적으로 잘 알려진 방법인 Schur algorithm을 이용하여 finite impulse response(FIR)와 infinite impulse response (IIR) lattice 필터를 설계하는 방법을 제안하였다. CMF는 기존에 많이 사용되는 root finding을 사용하지 않고 covariance polynomial로부터 minimum phase 특성을 가지는 polynomial을 얻는데 유용한 방법이다. 그리고 Schur algorithm은 toeplitz matrix를 빠르게 Cholesky factorization하기 위한 방법으로 이 방법을 이용하면 FIR/IIR lattice 필터의 계수를 쉽게 찾아낼 수 있다. 본 논문에서는 이러한 방법들을 이용하여 FIR과 IIR lattice 필터의 설계의 계산적인 예제를 제시했으며, 제안된 방법과 다른 기존에 제시되었던 방법 (polynomial root finding과 cepstral deconvolution)들과 성능을 비교 평가하였다.

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • 제28권6호
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

Fast IHS 변환을 이용한 trade-off 영상 융합기법 (A Trade-off Image Fusion Technique Using Fast Intensity-Hue-Saturation Transform)

  • 김용현;김윤수
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.26-32
    • /
    • 2009
  • 위성영상의 융합에 있어, 가장 중요한 점은 전정영상의 공간적 세밀함과 다중분광영상의 분광정보 모두를 보존하는 것이다. 다양한 영상융합 기법 중에서, IHS 변환을 이용한 융합기법은 폭넓게 사용되고 있으며, 계산과정이 매우 단순하다는 장점을 갖고 있다. 본 연구에서는, fast IHS 변환과 trade-off 파라미터 $\alpha^i$를 이용한 융합기법을 제안한다. 제안한 융합 기법은 분광 ERGAS와 공간 ERGAS의 평가를 통하여, 융합영상에서 분광정보와 공간적 세밀함 사이의 trade-off 최적화를 가능하게 한다. IKONOS 영상의 실험결과, 제안한 기법은 기존의 fast IHS 변환을 이용한 융합기법에 비해 공간적 세밀함과 분광정보의 보존측면에서 더 효과적임을 확인할 수 있었다.

  • PDF

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • 제5권1호
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

칼라영상센서의 분광감도 측정에 관한 연구 (A Study on the Measurement of Spectral Response Characteristics of Color Image Sensor)

  • 박승옥;김홍석
    • 한국광학회지
    • /
    • 제6권4호
    • /
    • pp.266-273
    • /
    • 1995
  • 칼라영상센서의 분광감응 특성은 칼라영상의 색을 결정하는 중요한 요인이 된다. 칼라영상센서의 분광특성을 간편하게 측정할 수 있는 장치를 제작하고 이를 사용하여 CCD 칼라 카메라의 분광특성을 조사하였다. 측정장치는 가시광선 영역내에서 단색광의 파장뿐만아니라 세기도 간편하게 조절할 수 있도록 제작된 광학부와 칼라영상센서의 출력신호를 디지탈값으로 처리하여 나타내는 색분석부로 구성되었다. 광학부에서 만들어진 단색광들에 대한 카메라의 출력값 R, G, B를 측정하였으며 이로부터 카메라의 연색성 및 선형성을 평가하였다. 이로써 제작된 측정장치가 칼라영상센서의 분광특성 측정 및 성능평가에 매우 유용함을 확인할 수 있었다.

  • PDF

식도발성화자 음성의 spectral & cepstral 분석 (Spectral and Cepstral Analyses of Esophageal Speakers)

  • 심희정;장효령;신희백;고도흥
    • 말소리와 음성과학
    • /
    • 제6권2호
    • /
    • pp.47-54
    • /
    • 2014
  • The purpose of this study was to analyze spectral versus cepstral measurements in esophageal speakers. The comparison between the measurements in thirteen male esophageal speakers was compared with the control group of thirteen normal speakers using the sustained vowel /a/. The main results can be summarized as below: (a) the CPP and L/H ratio of the esophageal group were significantly lower than those of the control group (b) the CPP was significantly correlated with the spectral parameters such as jitter, shimmer, NHR and VTI, and (c) the ROC analysis showed that the threshold of 10.25dB for the CPP achieved a good classification for esophageal speakers, with 100% perfect sensitivity and specificity. Thus, it was known that cepstral-based acoustic measures such as CPP, may be more reliable predictors than other spectral-based acoustic measures such as jitter and shimmer. And it was found that cepstral-based acoustic measures were effective in distinguishing esophageal voice quality from normal voice quality. This research will contribute to establishing a baseline related to speech characteristics in voice rehabilitation with laryngectomees.

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • 제29권2호
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.