• Title/Summary/Keyword: spectral study

Search Result 2,779, Processing Time 0.035 seconds

Simultaneous Confidence Regions for Spatial Autoregressive Spectral Densities

  • Ha, Eun-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.397-404
    • /
    • 1999
  • For two-dimensional causal spatial autoregressive processes, we propose and illustrate a method for determining asymptotic simultaneous confidence regions using Yule-Walker, unbiased Yule-Walker and least squres estimators. The spectral density for first-order spatial autoregressive model are looked at in more detail. Finite sample properties based on simulation study we also presented.

  • PDF

Computation of Uniform Hazard Spectrum for Wolsong Nuclear Power Plants. (월성 원전 부지의 등재해도 스펙트럼 계산)

  • 신진수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.297-303
    • /
    • 1998
  • The uniform hazard spectrum of Wolsong Nuclear Power plant Site is computed in order to estimate probabilistically the characteristics of spectral ground response. The spectral hazard values calculated from the seismic zoning maps proposed by eight seismologist are combined with equal weight to produce a uniform hazard spectrum. The uniform hazardd spectra corresponding to reference probabilities of 1.0 $\times$10-4/year and 1.0$\times$10-5/year are presented, which largely depend on the spectral attenuation relation. The computational results of this study contribute to verify the conservatism of the design ground spectrum of Wolsong Nuclear Power Plant.

  • PDF

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

Spectral Characteristics Visible and Near-infrared of Metamorphic Rocks (변성암의 분광특성)

  • 조민조;강필종;이봉주
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • The study is to analize the spectral characteristics of metamorphic rocks by their spectral reflectance curves obtained from CARY 17-D Spectrophotometer. Coarse grained rocks generally show strong absorption at 1.4 and 1.9 $\mu\textrm{m}$ due to preserved water inclusion in quartz of feldspar. The basic rocks show a broad absorption due to Fe$^{++}$ ion rich in mafic minerals. Strong absorption near 2.0$^+\mu\textrm{m}$ suggests existence of carbonate or clay minerals.

THE SPECTRAL DECOMPOSITION FOR FLOWS ON TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.91-101
    • /
    • 2022
  • We study some properties of nonwandering set Ω(𝜙) and chain recurrent set CR(𝜙) for an expansive flow which has the POTP on a compact TVS-cone metric spaces. Moreover we shall prove a spectral decomposition theorem for an expansive flow which has the POTP on TVS-cone metric spaces.

The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image (초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구)

  • Park, Jung-Seo;Seo, Jin-Jae;Go, Je-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.239-251
    • /
    • 2016
  • Hyperspectral image is widely used for land cover classification because it has a number of narrow bands and allow each pixel to include much more information in comparison with previous multi-spectral image. However, Higher spectral resolution of hyperspectral image results in an increase in data volumes and a decrease in noise efficiency. SAM(Spectral Angle Mapping), a method based on vector inner product to compare spectrum distribution, is a highly valuable and popular way to analyze continuous spectrum of hyperspectral image. SAM is shown to be less accurate when it is used to analyze hyperspectral image for land cover classification using spectral library. this inaccuracy is due to the effects of atmosphere. We suggest a decision tree based method to compensate the defect and show that the method improved accuracy of land cover classification.

Study on Modeling the Spectral Solar Radiation Absorption Characteristics in Determining the surface Temperature of a Ground Object (지상물체의 표면온도 계산을 위한 파장별 태양복사 흡수특성 모델링 연구)

  • Choi, Jun-Hyuk;Gil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • This paper is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground by considering the spectral solar radiation through the atmosphere. The spectral solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code which analyzes the detailed spectral transmission characteristics by considering the atmospheric gas layers. In this paper, the transient temperature distribution over a cylinder is calculated by using the semi-implicit method. The spectral radiative surface properties such as the absorptivity and emissivity of the objects are used to model the effects of the solar irradiation and the surface emission. Both the detailed spectral modeling and the simple total modeling for the solar radiation absorption show fairly good agreement with each other by showing less than 3% difference in surface temperature.

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.