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HOMOLOGY OF THE TRIPLE LOOP SPACE
OF THE EXCEPTIONAL LIE GROUP F,

YOUNGGI CHOI AND SEONHEE YOON

ABSTRACT. We study the homology of the triple loop space of the
exceptional Lie group F4 by exploiting the spectral sequences and
the homology operations.

Introduction

The homology of the iterated loop space is one of the main topics
in topology. Besides its own interest it has many applications to other
branches. Especially the homology of the tripie loop space is very
interesting from the gauge theoretic view point.

Let G be a compact connected simple Lie group. Since 73(G) =
74(BG) = Z, the principal G bundles Py over S* are classified by the
integer k in Z. For a given P, the orbit space of connections up to the
based gauge equivalence is homotopy equivalent to the triple loop space
of G [1]. Then there is a natural inclusion map i : My — C;, ~ 3G
where My is the moduli space of & instantons. Moreover the inclusion
map ¢ : My — Cs induces a homotopy equivalence 11] where M,
and C, are the direct limits under the inclusions. So the homology of
the triple loop space is a cornerstone for getting information about the
homology of the instanton space (2], [3], [4].

In this paper we study the homology of the triple loop space of the
exceptional Lie group F4 by computing the Eilenberg—Moore spectral
sequence and the Serre spectral sequence with the aid of the Dyer—
Lashof operations.
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G is called p-regular if G is p-equivalent to a product of spheres, i.e.,
A 2141
G ~, IIS

and G is called quasi pregular if G is p-equivalent to a product of
spheres and sphere bundles over spheres of type B(2n+1,2n+2p— 1),
ie.,

G >~ [IS2mtl o [IB(2n; + 1,2n; + 2p — 1).

Here B(2n + 1,2n + 2p — 1) is a mod p H-space defined as an S27+1-
bundle over $?"*+1+2(P—1) with characteristic element ap where ap is
the generator of the p-primary coniponent of 7, 1 3(p—1)— 1(8%).

It is well-known that Fjy is p-regular if and only if p > 13 and Fj is
quasi p-regular if and only if p > 5 10]. Hence for p > 5, the homology
of the triple loop space of Fj is simply determined by the homologies
of the triple loop spaces of spheres and the homologies of the triple
loop spaces of B(2n; + 1,2n; + 2p — 1)’s. So we first determine the
case p > 5 and then we concentrate on the cases p = 2 and p = 3.

1. Preliminaries

Let E(x) be the exterior algebra on z and I'(z) be the divided power
algebra on x which is free over v;(z) as a F, module with the product
Ti(z)y;(z) = (i“;j)'yiﬂ(a:) . In this paper the subscript of the element
always denotes the degree of that element.

We have homology operations Q;¢, 1) on the (n + 1)-loop space
Qrtlx

6'21'(;)‘—»1) : Hq(QThLlX;]Fp) - Hpq+i(p—1)(ﬂn+1X;Fp)

for 0 < ¢ < n which are natural with respect to (n + 1)-loop maps.
In particular, we have (Jox = zP. The iterated power Q¢ denotes the
composition of Q);’s a times, i.e., Q¢ =Q;0---0Q;.

R

a times
These operations satisfy the following properties.

PROPOSITION 1.1. [6] In the path-loop fibration

Qn+2X — PO™ +1X - Qn%—lX:
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we have the following;

(1) if z € H("T1X;F,) is transgressive in the Serre spectral se-
quence, then so is Q;x and 70 Q,(,—1)T = Qi+1 (p—1) © 7T for each i,
0 <: < n where 7 is the transgression,

(2) forp>2andn > 1, d" - V(-1 @ 7(z)) = —BQp-1yT(T),

(3) forp =2, 8q}Q,x = Q; .1z ifr € H, ("1 X:F3) and g+ is even.

Let P*(2X;F,) be the primitives of H*(2X;F,) and Q*(QX;F,)
be the indecomposables of H*(QX;F,).

PROPOSITION 1.2. [7] Let X be a simply connected H-space. Then
the following is true:
(1) The suspension o : Q°(X;F,) — P (X . F,) is injective,
(2) the suspension o : Q" (X;F,) — P°¥(QX;F,) is onto,
(3) the quotient P*v*"(1X;F,)/c(Q°4(X;F,)) is obtained by trans-
potence,
(4) the elements in kero are dual to elements in the image of the
homology transpotence.

For n > 1, as an algebra the homology of the triple loop space of
the odd sphere is determined by [6]

H, (P52 1 Fo)=F2[Q¢Q4uan—2: a > 0,5 > 0].
H*(9352n+1;Fp):]Fp[Qg(p_l)UQr.——Z ta 2> 0}
®E(Q?pf1)ﬂQg<p_l)u2nA2 ca>0,b>0)
OF,[8Q¢,_1,8Q%,_1u2n—2 - a > 0,b> 0], p: odd.
The exceptional Lie group Fj when localized #t p splits as follows:

Fy~)B(3,11) x B(15,23),  p=3,

F4’;‘(I,)B(3, 15) x B(]1,23), D= 7,
Fy~,;)B(3,23) x S1 x §15, p =11,
F42(p)ni:058k+3 X H’lczoswc—i—lf)’ P Z 13.

Hence H,(22Fy;F,) is a tensor product of H, (@S2 L F,)'s
for p > 13, and H,(2*Fy;Fp) a tensor product of H,(Q35%"+1,F,)’s
and H.(2®B(2n+1,2n +2p— 1);F,)’sfor p > 5

The space B(2n +1,2n + 2p — 1) is equivalent to a direct factor of
the p-localization of SU(n + p)/SU(n) [10] and its cohomology ring is

H*(B2n+1,2n+2p - 1);F,) = E(xon- 1, Tont+2p-1)
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with Plzani1 = Tontop-1-

So from the computation of the homology of the triple loop space of
the special unitary group SU(m)[4, 12], we get directly the homology
of the triple loop space of B(2n + 1,2n + 2p — 1).

THEOREM 1.3. For an odd prime p , as an algebra the homologies
of B3B(2n + 1,2n + 2p — 1) are given by:

H.(B(2n+1,2n+ 2p - 1);F,) = H. (ST F))
QDH* (QBS271+2‘[J— } : ]Fp) fOI‘ n> 1’

H(Q3B(3,2p +1):F,) = Fo[Q3, 1) (Qap-nl1] * [~p]) s a > 0]
®E( Z—»IQg(p,_l)Uhp -3:Q > O,b > ())
®Fp[ﬁQ;m1Qg(p_1)u2pz‘3 ca>0,b> 0}_

where Q3B(3,2p + 1) is the zero component of Q3B(3,2p + 1).

2. Homology of the double loop space of F,

From now we turn to the cases p = 2 and p = 3. The following is
well-known.

THEOREM 2.1. H*(F4;IF2) = ]F_),(CIIg)/(.’IZ%) @ E(Sq2$3,:1:15, Sq8I15),
H*(F4;F3) = ]Fg(ﬂpll'g)/((ﬂplrg)‘g) ® E(.’L‘g,'leg,.’Iin,Pl.’En).

THEOREM 2.2. The cohomology of the loop space Q2F} is
H*(QUF3;Fa) = Falya] /(43) © T(ys, Y10, y14, Y22)-
Proof. In the the Eilenberg—Moore spectral sequence converging to
H* (QFy; Fo),
Ey = Tory. (x5, (F2,F2)
= I(0(Sq°z3),0715,0(Sq"215)) ® (E(0z3)) ® T(d2(z3)).

Since Fs is even dimensional, we have Fy = E,. Since the Eilenberg-
Moore spectral sequence is a spectral sequence of’ Steenrod modules,
we have

S (ox3) = (03)° = 0(Sq°x3).

So we get the conclusion. ]
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THEOREM 2.3. The cohomology of the loop space QUFy is
H* (QF 3 F3) = Falya]/ (42) © T(y10, Y11, Y15, y22)-
Proof. In the EMSS converging to H*(QFy; Z/(3))
Ea =Toru-(x;2/())
= [(ox3, 0P ez, 0211,0P c ) © (E(08P z3)) @ T(p1(BP x3)).

Since the cohomology of the loop space of a compact simple Lie group
is even—dimensional and torsion free from the Morse theory, we have
that da(v3(0z3)) = 08P z3. So

Eq = ]F;15 oxs] ® (¢ (B”Pla 1)) ® F(0P1$3,0$11,0P1$3).

Since E3 is even dimensional, we have F3 = E,. Let yo € H*(2Fy; F3)
represent gz3 and yso € H*(2F,; F3) represent 1 (3P z3). Hence as
a coalgebra

H*(QF;;F3) = Fa[ya)/(¥3) ® T(ya2) @ (0P es, 021y, 0P ey,

The action of the Steenrod operators on F, induces the algebra
structure of H*(QFy;F3). In E, , we have (oz3:% = Ploxs = oPlas
which in turn gives that as an algebra

H*(QFy;F3) = Fslya]/(y3) © D(y10, Y11, Y18, Ya2)- )

As in the case of the cohomology, we can compute the Eilenberg-
Moore spectral sequence converging to H,(Q2Fy; 7,) with

EQ == EXtH‘(X;]F,,)(]Fpa ]Fp).

COROLLARY 2.4. As an algebra the homologies of the loop space
QFy are
H,(QF;Fo) = E(y») © Falys, y10, v14, Y22,

H, (QFy;F3) = Fslya]/ (y3) © Falye, Y10, Y14, Y22 ).

Now consider the path-loop fibration

Q% Fy - % — QF,
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THEOREM 2.5. The cohomology suspension map
0 : Q" (A Fp) - P HQFF,)
is a monomorphism for p =2 or p = 3.
Proof. We divide the proof in two cases.

(Case 1) p=2
Assume that = € (kero)s,. From Proposition (1.2,4), 2¢ =n x 2° + 2
for some n > 1 and s > 2. Hence 2¢ = 2 (mod 4). Let F4 is the
3-connected cover of Fy. Then Q2Fy ~ S! x Q2F,. Since Fy is in fact
7-connected, we have n > 6.

Then 2¢ > 6 x 44 2 = 26 and there is no indecomposable element
of dimension d with d > 26 and d = 2 (mod 4). Hence kero = 0 and
0 is a monomorphism.

(Case 2) p=3
Since §2F4 has torsion free cohomology we have H44(QFy;F3) = 0.

Assume that x € (ker 0)2,. From Proposition (1.2,4) we must have
2q = 2n3% + 2 for some n > 1 and s > 1. Since Qun(2%Fy;F3) is dual
to P (Q?Fy; Fs) and H4(QFy;F3) = 0, from Proposition (1.2,3)
P2 (Q2F4;F3) is obtained by the transpotence ¢x for some k. Hence
2n = (2m3" —2) for some m > 1 and r > 1. Then 2¢q = (2m3" - 2)3°* +
2>(2:-3-2)3+2=14 and 2¢g =2 (mod 3).

By inspecting H*(2Fy;F3) we can see that y14 € H*(2Fy;F3) is
the only possible elements in ker 0. But ¥, is of height greater than 3.
Therefore y14 is not in ker 0. Hence o is a monomorphism. il

From the above theorem the Eilenberg—Moore spactral sequence con-
verging to H*(Q2Fy; Fo) (or H,(Q?Fy;Fy) ) collapses from the Ey term
and we get the following theorem.

THEOREM 2.6. As an algebra, the homology rings of the double
loop space of Fy are as follows:

(a) H.(QF4;F2) = E(z1) ® Fylzs] © F2[QF2; s a > 0,1 =7,9,13,21],
(b) H.(QPFy;F3) = E(z1) ® Falz16) ® E(Q%217;a > 0)
QF3[8Q5217 10 > 0] ® E(Q32y : a > 0) @ F3[fQ%29 : a > 0]
®EJ(Q(5213 ta 2 0) & F;}[BQ%Z[;; ta > 0] ® E((Q%Zzl a Z 0)
QF 4 [/3(23221 ta > 0]
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Proof. (a) Consider the path loop fibration: Q%F; — x — QF).
Then the elements ya, ¥5, y10, ¥14. Y22 in H,(QF; Fa) are dual to gen-
erators in cohomology. Hence by Theorem 2.5, they are transgressive
and let 21, 27, 29, 213, 221 be the corresponding images in H, (Q?Fy; Fq).
Since y4 is not primitive, the element y, is not transgresive and d?(ys®
1) = y2®21. Since d*(y2®1) = 0 . yoy4® 2z hits z; € He(22Fy: Fy) and
y3 transgresses to z7 € H7(Q2Fy; ]Fg) By Proposition (1.1), 2°"" =
Q8&y? transgresses to Q%z; and Qdy? ® le7 hits (Q%27)2. For 1=
10,14,22, y; transgresses to z; . € H7(Q%Fy;F3). So we have the
following;

(1) 7(Q%y:) = Q%2_1,a >0, 4= 10,14,22
(2) d(yoya ® z125) = 1® 25Tk > 0,
(3) 7(ui") = 7(Qgd) = Qizr,0 2 0,

Therefore

H,(Q2F4;Fy) = E(z1) @ Falz6) ® F2[Q%2; a0 > 0,4 =7,9,13, 21].

(b) The generators ya, Y10, Y14, Yo, Y22 in H,(QFy;F3) are dual to the
generators in H*(£2Fy; F3). Hence in the Serre spectral sequence corre-
sponding to the path—loop fibration, they are transgressive by Theorem
2.5 and let z; for ¢ = 1,9,13,17,21 be the corresponding trangressive
images in H,(22Fy;F3) Since yg is not primitive, the element Yg Can
not be transgresive and d*(ys®1) = y3®z;. We also have d?(yg®1) = 0
andE3 =0forl1 <r <15, r# 10,14 and 2 < s < 9. 1242 ® 2
hits 216 € H16(§22Fy; F3) Therefore we have the following in the Serre
spectral sequence corresponding the path-loop fibration;
(1) 7(Qfy:) = Q%zi1,a >0, 1:=10,14,22,
((ngz) (Q2"2 1)(IBQG+121 1) \

=1® (BRI zi_)** ,a >0,k >0,
(2) d(y2yd @ z12%) = 1® 2551k >0,
(3) (") = 7(Qewd) = Qzrra > 0,

d((y6)*"" ® (Q4217)(8Q5 ™ 210)%)

=1®(8Q5  217)% " ,a > 0,k > 0.
Therefore the conclusion follows. O

REMARK. In fact we can get the relations such that [Bz; = zg
and Bz17 = z16 from the homology of the double loop space of the
3-connected cover Fy [13].
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3. Homology of the triple loop space of F,/Spin(9) and Fj
We have the following fibration

Spin(9) —'— Fy —L— Fy/Spin(9)
where Fy/Spin(9) = S8 Ue!® is the Cayley projecsive plane such that
H*(Fy/Spin(9); F2) = Folus]/ ().
So we have a sequence of fibration::
S Spin(9) 2 rpy R QrE,/Spin(9) — -

P

. — QFy/Spin(9) —— Spini9) —— F Fy/Spin(9)

In this section we first study the homology of the triple loop space
of the Cayley projective plane and study H,(Q2*Fy;F,) later. We do
the case of p = 2 first.

LEMMA 3.1. As an algebra,
H.(Q3Fy/Spin(9); Fo)=F[Q%us : a > 0] ® F2[Q¢buso : a > 0,b > 0].
Proof. In the Eilenberg-Moore spectral sequence converging to
H*(QF;/Spin(9); Fa), we have

Fy=Tory;. (Fn,/spa:n(g);Fz)(Fz, Fy
=F(y7) @ [(ya2).

By the degree reason, there can not be non-—-trivial differential. Hence
Fy = E, and we get

H*(QF;/Spin(9); F,) = E(y7) ® Dlyaz).

Consider the Eilenberg—-Moore spectral sequence converging to
H.(Q?F,/Spin(9); F2) with

EQZEXtII‘ (QF4/ 5pin(9);F2) (]FQ, F; )
r]Fz’Ze,] & IFQ':CQ?Z;H a2 01
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This is a spectral seqence of a Hopf algebra. So the source of the first
non-trivial differential is an indecomposable element and the target
of the first non-trivial differential is a primitive element. In F5, all
generators are of bidegree (—1,7) or of bidegree (--1,22x2") for n > 0.
So the bidegree of the target of the first differential is of the form
(=1 —=m,6+m) or (-1 —m,22 x 2" +m — 1). In the other hand
every primitive element in the Ey-term is of bidegree (—2™,7 x 2™) or
(—2™,22 x 2™1") for any m,n > 0. But 22 x 2™ — 2 = 2(11 x 2" — 1)
can not be of the form 7 x 2™ - 2™ = 2(2™ x 3) for any m,n >
0. Therefore there is no non trivial differential. Hence the spectral
sequence collapses from the E%-term and we hav:

H.(Q*Fy/ Spin(9);Fg) = Falzg] ® Fo Q4201 : @ > 0]

Consider the following fibration
Q3Fy/Spin(9) —— Q2Spin(9) — —— Q%Fy
and the corresponding Serre spectral sequence w-th
E? = H (?Fy;Fy) &) H, (3 Fy/ Spin(9); Fy).
From [5] we know that

H,(Q%Spin(9); F2)=E(z,) ® F[zg]
OF[Q¢zi :a>0,i =5,7,9,13].

From Theorem 2.6,

H, (¥ Fy;Fg)=E(z1) ® Fa[zg]
®F2[Qfzi :a > 0,i=7,9,13,21].

Since the homology of the total space has a 5-dimensional generator
and has no 21-dimensional generator, the homology of the fibre space
must have a 5-dimensional generator, say us, and a 20-dimensional
element, say ugg, which should be the target of the differential from
291. Since the homology of the total space contains Q¢zs a > 0, by the
naturality of the action of the Dyer- Lashof operators, the homology of
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the fibre space also has Q{us. Now we consider the Eilenberg-Moore
spectral sequence converging to H,(Q2®Fy/Spin(9);F3)) with

E?=Cotory, (a2F,/spin9)F,)(F2, Fa)
:]FQ[ (fu5 a > 0] [ FQ[Q%Q%UQ() ta,b> 0} .

Then the spectral sequence collapses from E? anc we get the conclu-
sion. l

Since m3(Fy) = Z, mo(Q2P3Fy) = 7. Let Q3F, be the zero component
of Q3F4.

THEOREM 3.2. As an algebra,

H, (3 F4:F2)=F;[Q%us : a > 0]
©F:[Q{Q4u; : i = 6,8,12,20,a > 0,b > 0].

Proof. Consider the following sequence of fibrations:

Q3p

3 . 0% 3 g 3 . QQ’)’ 2 .
Q°Spin(9) ——— Q°F; —— Q°Fy/Spin(9) —— Q28pin(9)

and the Serre spectral sequence converging to H (B Fy; Fo) with
E? = H.(QF,/Spin(9): Fo) ® H,(Q3Spn(9); Fy).
From [5] we know that

H.(Q3Spin(9); F2)=F2[Qfus a > 0]
OF2[Q4Q%u; i =4,6,8,12,a > 0,b > 0].

From the proof of Lemma 3.1 we know that
(2°9).(QF (us)) = QF(z5),a > C.

Since 22v0Q3p is null-homotopic, Q¢ (us) can not survive to £°°. This
means that we have the following differentials

d(Q5Q%(us)) = Q5Q4(ua), a>0,5>0
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from the properties of the Dyer-l.ashof operations in Proposition (1.1,
(1)). Note that uy is the unique 4-dimensional primitive element in
H, (Q3Spin(9); Fs). Since this is a spectral seqence of a Hopf algebra,
we have

Ay (d(ugo)) = d(A(uap))-

Hence d(u20) should be primitive since usg is primitive. But there is no
other 19-dimensional primitive element than Q?w., in H.(Q3Spin(9); Fy),
so that d(u20) = 0 up to choices of generators. Hence by the properties
of the Dyer-Lashof operations, we have

d(Q1Q' (uz0)) = 0,

so that Q$Q%(ugg) survives permanently for eaca a,b > 0. Hence the
result follows. 0

Now we turn to the case of the homology with F3 coefficients.

LEMMA 3.3. [4,12] As an algebra,

H,(Q2SU(9);F3) = E(Q%z9;_1;¢ = 1,2,4,5,7,8 a > 0)
OF3(Q%z :i=16,34,a > 0] ® F3[8Q%z22; 1 :i=4,5,7,8,a > 0].
H,(BSU(9);F3) = F3(Q4(Qal1] * [-3]) s a > 0
@Fg{Qﬁquj_g 1 =12,4,5,7,8,a > ()]
QE(Q4Q%ue; 3 :1=3,6,a>0,b.>0)
OF3 B8Q5Q%uei—3 11 = 3,6,a > 0,0 >0
DE(Q48Q5u0: 2:i=4,57,8a> 0,b>0)
DF3 3Q38Q%ugi 9 11 = 4,5,7,8,a > 0,b > 0],

where [1] € H,(Q3SU(9);F3) is the image of the generator in Hy(S?)
for the map: §° — Q3SU(9).

By the Harris splitting (9.,
SU(2n + 1) >3 (SU(2n+1)/50(2n + 1)’ x SO(2n + 1).

Hence from the cases of the homologies of the double and triple loop
spaces of SU(9)[12], we easily get the following corollary.



160 Younggi Choi and Seonhee Yoon

COROLLARY 3.4. As an algebra,

H,(Q*Spin(9); F3) = H.(Q250(9 ) F3)
= E(Q32150 2 0) © F3(Qf216 - a > 0] ® E(Q520 : a > 0)
®F3[8Q52z0 : a > 0] ® E(Q3z13 : a > 0) ® F3[8Q5213 : a > 0],

H.(25Spin(9); Fs) = H,(350(9); Fs)

—FS[Q4(Q4[ [ *[=3]) 1 a > 0] ® F3[Qfu, : 8,12,a > 0]
®E(Q2Q6u15 a>0,b>0)®F3[8Q2Q% 15 :a > 0,b> 0]
®F(Q2[3Q4u, i=28,12,a > 0,b > 0)

®F;3[8Q88Q4%; 11 =8,12,a > 0,b > 0].

Similar to the case of the coefficients F, by computing Eilenberg—
Moore spectral sequnce twice we get the following lemma.
LEMMA 3.5. As an algebra,

H, (¥ Fy/Spin(9); F3)=F3[z6) ® E(Q%201 : @ > 0)
®F3[BQ%291 : a > 0].

From Theorem 2.6, we can analyvze the Serre spectral sequence con-
verging to H,(Q2Fy;F3) for the following fibration

2
2F, P Q2F,, Spin(9).

02 Spin(9)
Then we have the following differentials
d(Q8z6)=Q3 "2, a>0.

And (Q826)2Q57 1 2; survives eventually and becoraes E(Q$z17) in
H*(Q2F4;1F3). Then we have

0%.(Q4z;) = Q§zj,a20,_j:9,13,21

0%, ((BQ82;)F) = (BQ4z;)%,a > 0,5 =9,13,21,k > 0,
Sz 1y (’v ) - ~163

0%, ((Q%z16) ) (ﬁQ‘z‘zl—()k,a >0,k >0.
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LEMMA 3.6. As an algebra,

H*(Q3F4/Spin9;]F3) = E(Q_ﬁu;, ta Z 0) X IFS[QZUIS ra > 0}
®F3[Q2U20 ra > 0} ® E(QgﬂQg’ltgo ra > 0, b> 0)
®F3{BQ%6Q2“20 ta>0,b> ()}.

Proof. Consider the following morphisms of fibrations:

Q3 Fy —_— * —— 2R,

l l H

Q3F,/Spin(9) —2 Q2Spin(9) ¥ -— Q2F,

Now we study the Serre spectral sequence converging to
H.,(Q2Spin(9); F3) with

E? = H.(Q*Fy;F3) © H,(Q3F,/Spin(9); F3).

H,(Q2Spin(9);F3) has the generator Qoz; but H,(Q2Fy;Fs) has no
generator of degree 5. So the homology of the fiber space must contain
the element of degree 5, say us, and by the natuality of the action of
the Dyer-Lashof operators the homology of the fiber space contains

Sus for a > 0. In H,(Q2Spin(9);F3) there are no generators of
the same degree as Q5z17,a > (. So we have the differentials from
Q5z17,a > 0. Since the element ()52~ is odd primitive for each a > 0,
Q5217 is transgressive in the path--loop fibration by Proposition 1.2. So
by naturality the homology of Q”F,/Spin(9) have Q%u1s,a > 0 such
that

d(Qng'/):CQZUlﬁ, a > 0.

From the facts

Q?p,(Q%221) = Q%zs1,a > 0,
Q%p, ((BQ3221)%) = (BQ%221)%,a > 0,k > 0,

we have differentials from Q%20;.a > 0 and Q§3Q5291,a > 0,b > 0
such that

d(Q5221) = QFuso,

d(Q2BQR5221) = QB ug,
d((Q88Q5221))2Q38Q4u0) = —BQ5 " BQ4uz0.
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Now we consider the Eilenberg~Moore spectral sequence for the
above fibration converging to H,(Q3F,/Spin(9);F;) with

EQ:CotorH*(Q?F“FS)(]Fg,H*(QQSpin(Q); Fs3))
:CotorH*(Qzﬂ;M)//in*(]Fg,]Fg) ® E(Q3us : a > 0)
=E(Q3%us : a > 0) @ F3[Q3u1es : a > 0] ® F3[Quz0 : a > 0]
QF(Q48Q%ua0 : a > 0,b > 0) ® F3[8Q38Q5uz0 : a > 0,b > 0].

The above information about the Serre spectral sequence implies that

the Eilenberg-Moore spectral sequence collapses from E? and we get
the conclusion. O

THEOREM 3.7. As an algebra,
H.(Q3Fy4;F3) = F3[Q%ui6 : a > 0] ® £(Q%Q8u1s:a > 0,b > 0)

®F3[8Q3Q8u15 :a > 0,b> 0] ® E(Q$8Q4u; : i = 8,12,20,a > 0,b > 0)
®F3[Q2u, : i = 8,12,20,a > 0] ® F3[8Q28Q4u; : i = 8,12,20,a > 0,b > 0].

Proof. We have the following sequence of fibrations

BSpin(9) —— BF, —— Q3F,/Spin(9) ~22- 02Spin(9).
Consider the Serre spectral sequence converging to H,(Q25Fy; F3) with

E? = H,(Q*F,/Spin(9); F3) ® H,(Q3Spmin(9); F3).

By Corollary 3.4 we have

H.(238pin9; F3) = H.(Q3SO(9); F3)

=F3[Q3(Qa[1] * [-3]) : a > 0] @ F3[Q%u, : 8,12,a > 0]
E(Q3Q%u1s : a > 0,b > 0) ® F3[3Q2Q8u1s : a > 0,b > 0]
QE(Q38Qu; :i=8,12,a > 0,b > 0)

QF3[8Q38Q4%u,; : i = 8,12,a > 0,b > 0].

From Lemma 3.6, we have

QQ’Y*(Q8U5):Q§+IZ’1, a _>_ 0.
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So from the uniqueness of the 4-dimensional prim tive element we have
the following differential

d(Q3us)=Q1(Qa[1] * [-3]).

Since there is no 19 dimensional primitive element in H, (2 Spin9; Fs),

the element uyg survives. Now we should determine whether there is a

differential from w16 to the 15-dimensional primitive element u;5. Con-

sider the Eilenberg-Moore spectral sequence converging to H, ( (3Fy; Fy)
with

E? = Cotor!" (»Qzl““%)(IFg,ng}.
Then the 16-dimensional indecomposable element lies in (-1, 17) and
the 15-dimensional primitive elenient lies in (-1,.6). Therefore there

can not be non trivial differential. Hence the differential from z¢ is
trivial. So we get the conclusion. O

For each odd prime p, there exist a simply connected finite CW
complex X whose localization X (p) at p is an H-space with

H*(X(p);Fs) = F3[8P'z3 /(8P 23)%) ® E(zs, Plas).

Though Fy is not quasi 3-regular, it can be decorposed as a product
8;
F4 =(3) )((3) X B(ll, 15)
So from the homology of triple loop space of Fy, we get that
COROLLARY 3.8. As an algebra,
H*(QgX(?)) Fg) Fg[Q4U16 a >’ 0}
OF(Q5Q8u1 1 a > 0,b> 0)
QF3[B3Q%Q%u5 : a > 0,b > 0]

®E(Q36Q2U20 ra>0,b> O)
®]F3[6QZU20 ra > 0] ® Fg[ﬂQ%ﬂQZUgO a> 0,6 > 0]
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