• 제목/요약/키워드: spectral set

검색결과 348건 처리시간 0.028초

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • 농업과학연구
    • /
    • 제48권2호
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

소아 뇌에서의 혼성 이차원 양성자자기공명분광법의 임상적 응용 (Hybrid Two-Dimensional Proton Spectroscopic Imaging of Pediatric Brain: Clinical Application)

  • Sung Won Youn;Sang Kwon Lee;Yongmin Chang;No Hyuck Park;Jong Min Lee
    • Investigative Magnetic Resonance Imaging
    • /
    • 제6권1호
    • /
    • pp.64-72
    • /
    • 2002
  • 목적 : 소아 뇌 질환에서의 자기공명분광법의 임상적 적용에 있어서 단일화적소 양성자 자기공명분광법과 고식적 이차원 양성자 자기공명분광법에 비해 혼성 이차원 양성자 자기공명분광법이 가지는 장점에 대하여 알아보고자 하였다. 대상 및 방법 : 생후 3일에서 15세까지의 79명의 소아 (정상소아 36명, 저산소성-허혈성 뇌 손상 10명, 대사성 질환 20명, 뇌막염-뇌염 3명, 뇌종양 7명, 신경섬유종증 1명, Sturge-Weber 증후군 1명, lissencephaly 1명)를 대상으로 81회의 혼성 이차원 양성자 자기공명분광검사를 시행하였다. 성인자원자(n=5)에서 단일화적소 양성자 자기공명분광법, 고식적 이차원 양성자 자기공명분광법, 그리고 혼성 이차원 양성자 자기공명분광법 모두를 실시하였고, 환아군 중 일부(n=12)에서 PRESS기법을 이용한 단일화적소 분광법과 혼성 이차원 양성자 자기공명 분광법을 함께 시행하였다. 1.5-T 초전도영상장치 하에서 standard head quatrature coil을 이용하여 양성자 자기공명분광을 얻었다. Phase encoding step은 16$\times$16으로 하였고, FOV는 환자 뇌의 크기에 따라 다양하게 하였으며, FOV내의 혼성 관심 체적 (hybrid VOI)은 $75{\times}75{\times}15{\;}\textrm{mm}^3$ 또는 그 이하로 함으로써 원하지 않는 지방에 의한 신호를 없애도록 하였다. PRESS기법 (TR/TE= 1,500 msec/135 또는 270 msec)을 적용하였고, 물에 의한 신호를 억제하기 위하여 chemical shift selective saturation pulse를 사용하였다. 혼성 이차원 양성자 자기공명분광검사의 획득시간(data acquistion time)과 분광의 질(spectral quality)을 단일화적소 양성자 자기공명분광법과 고식적이차원양성자 자기공명분광법의 그것과 비교하였다. 결과: 혼성 이차원 양성자 자기공명분광법은 79명의 소아 전 예에서 성공적으로 시행되었다. 단일화적소 양성자 자기공명분광법의 획득시간은 4.3분인 반면에, 혼성 이차원 양성자 자기공명분광법의 획득시간(data acquition time)은 6분 미만으로, 이는 소아의 뇌영상용으로 쓰기에 충분히 짧은 소요시간이었다. 혼성 이차원 양성자 자기공명분광법에 의한 분광은 단일화적소 자기공명분광법에 의한 분광과 거의 비슷한 민감도와 분광분해 능을 나타내었으며, 반면에 고식적인 이차원 양성자 자기공명분광법에 의한 분광보다는 훨씬 우수하였다.

  • PDF

금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교 (Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction)

  • 이귀철;박영준;홍주완
    • 한국방사선학회논문지
    • /
    • 제17권4호
    • /
    • pp.541-549
    • /
    • 2023
  • 본 연구는 CT 촬영 시 금속으로 인해 발생한 금속 인공물 감소를 위한 알고리즘 적용에 따른 영상 화질에 대한 정량적 비교를 하고자 한다. Spectral detected-based CT와 CT ACR 464 팬톰을 이용하여 일반적인 필터보정역투영 알고리즘을 적용한 기준 영상을 10장 획득하고, 동일 팬톰에 금속 인공물을 발생시켜 일반적인 필터보정역투영 알고리즘을 적용한 영상을 10장 획득하였다. 금속 인공물을 발생시켜 획득한 영상의 원시 데이터에 metal artifact reduction 알고리즘, 가상 단일 에너지 알고리즘, metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘을 적용한 영상을 각각 10장씩 획득하였다. 알고리즘 적용에 따른 hounsfield unit 비교를 위해 CT ACR 464 팬톰 module 1에 위치한 폴리에틸렌, 뼈, 아크릴, 공기, 물에 관심영역을 설정하고, 전체 영상 화질 평가를 위해 평균 제곱근 오차, 평균 절대 오차, 신호 대 잡음비, 최대 신호 대 잡음비, 구조적 유사도 지수 지표를 통해 알고리즘 별 비교하였다. 알고리즘 적용 영상 별 hounsfield unit 비교 결과 알고리즘 적용 영상 간 유의한 차이를 보였으며(p < .05), 아크릴을 제외한 관심영역에서 가상 단일 에너지 알고리즘 적용 영상에서 큰 변화를 나타냈다. 영상 화질 평가 지표 결과 metal artifact reduction 알고리즘 적용 영상 화질이 가장 높았으나, 구조적 유사도 지수는 metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘이 동시에 적용된 영상이 가장 높았다. CT 촬영 시 금속 인공물 감소에 metal artifact reduction 알고리즘이 가상 단일 에너지 알고리즘에 비해 효과적이었지만, 양질의 CT 영상 획득을 위해 알고리즘 적용에 따른 이점과 영상 화질 변화를 파악하고 효율적인 활용이 필요하다고 사료된다.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

근적외분광분석법을 이용한 감귤잎의 수분 측정 (Determination of the water content in citrus leaves by portable near infrared (NIR) system)

  • 서은정;우영아;임현량;김효진;문두경;최영훈
    • 분석과학
    • /
    • 제16권4호
    • /
    • pp.277-282
    • /
    • 2003
  • 감귤의 생육단계별 토양 수분의 양은 감귤의 비대와 당도에 영향을 미치며, 토양 건조 처리를 통해 수분스트레스를 부여하면 과실의 당도를 높일 수 있다. 감귤잎 수분 함유율의 측정은 감귤 성장 시기에 따른 관수 시점, 관수량 조절의 지표가 될 수 있다. 본 연구는 근적외분광분석법(NIRS)을 이용하여 비파괴적으로 감귤잎의 수분을 측정하기 위하여 수행되었다. 온주밀감 (Citrus unshiu Marc.)의 잎 ('Okitsu' Satusuma mandarin leaves)은 건조감량시험법에 따라 건조시켜 수분 함유율 20.80-69.98% 범위로 하여 사용하였다. 감귤잎의 흡수 스펙트럼은 광섬유 반사 프로브를 이용하여 측정하였고, 1450 nm에서 수분 함유율 변화에 따른 OH band의 변화를 관찰할 수 있었다. 감귤잎 수분 측정을 위한 모델은 1100-1700 nm 파장 범위의 스펙트럼을 사용하여, 부분최소제곱법 (PLSR, Partial least squres regression)을 실시하여 개발되었다. 그 결과 SEP (Standard errors of prediction)는 0.97%였다. 개발된 모델을 검증하기 위하여 다른 감귤잎에 적용시킨 결과, 건조감량 측정 결과에 대하여 SEP 0.81%로 좋은 상관성을 보여주고 있다. 본 연구를 통해서 신속하고 비파괴적인 감귤잎의 수분 함유율 측정이 근적외분광분석법을 이용하여 성공적으로 수행되었다.

국내 수계의 남조류 원격모니터링을 위한 고유분광특성모델 개선 연구 (A Study on Model Improvement using Inherent Optical Properties for Remote Sensing of Cyanobacterial Bloom on Rivers in Korea)

  • 하림;남기범;박상현;신현주;이혁;강태구;이재관
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.589-597
    • /
    • 2019
  • The purpose of this study was improve accuracy the IOPs inversion model(IOPs-IM) developed in 2016 for phycocyanin(PC) concentration estimation in the Nakdong River. Additionally, two optimum models were developed and evaluated with 2017 measurement field spectral data for the Geum River and the Yeongsan River. The used measurement data for IOPs-IM analyzation was randomly classified as training and verification materials at the ratio of 2:1 in all data sets. Using the training data set from 2015-2017, accuracy results of the IOPs-IM generally improved for the Nakdong River. The RMSE(Root Mean Square Error) decreased by 14 % compared to 2016. For the GeumRiver, the results of the IOPs-IM were suitable, except for some point results in 2016. Results of the IOPs-IM in the Yeongsan River followed the overall 1:1 line and MAE(Mean Absolute Error) was lower than other rivers. But the RMSE and MAE values were higher. As a result of applying the validation data to the IOPs-IM, the accuracy of the Nakdong River was reduced to RMSE 17.7 % and MRE 16.4 %, respectively compared with 2016. However, the MRE(Mean Relative Error) was estimated to be higher by 400 % in the Geum River, and the RMSE was more than 100 mg/㎥ of the Yeongsan River. Therefore, it is necessary to get the continuously data with various sections of each river for obtain objective and reliable results and the models should be improved.

근적외선분광법을 이용한 옥수수 사일리지의 소화율 및 에너지 평가 (Prediction of the Digestibility and Energy Value of Corn Silage by Near Infrared Reflectance Spectroscopy)

  • 박형수;이종경;이효원;김수곤;하종규
    • 한국초지조사료학회지
    • /
    • 제26권1호
    • /
    • pp.45-52
    • /
    • 2006
  • 본 시험의 목적은 옥수수 사일리지의 소화율 및 에너지가치를 신속하고 정확하게 평가하는 방법으로서 근적외선분광법(NIRS)의 이용성을 확대하고 동시에 더욱 정확한 검량식을 유도하기 위하여 수행되었다. 112점의 옥수수 사일리지 시료를 이용하여 근적외선분광기를 이용하여 스펙트럼을 수집하였다. 검량기법은 변형부분 최소자승회귀법(MPLS), 산란보정법은 SNV-D 또한 1,4,4,1 수처리 방법을 이용하여 검량식을 작성하였다. 옥수수 사일리지의 소화율 측정방법에 따른 근적외선분광법의 예측 능력은 IVDMD, IVTD 및 CDMD 함량에서 각각 $SEP=1.57% (R^2v=0.70),\;SEP=1.13%(R^2v=0.73)$$SECV=1.74%\;(R^2v=0.77)$로 나타났으며 에너지 가치를 예측하기 위한 검량식 작성 및 검증 결과는 TDN, NEL 및 ME 함량에서 각각 SECV=0.69% $(R^2v=0.85)$, SECV=0.02% (R2v=0.88) 및 SECV=0.02% $(R^2v=0.88)$로 비교적 양호한 결과를 나타냈다.

The importance of NIR spectroscopy in the estimation of nutritional quality of grains for ruminants

  • Flinn, Peter C.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1612-1612
    • /
    • 2001
  • The production of grain for export and domestic use is one of Australia's most important agricultural industries, and the NIR technique has been used extensively over many years for the routine monitoring of grain quality, particularly moisture and protein content. Because most Australian grain is intended for human food production, the determinants of grain quality for livestock feed, apart from protein, have been largely ignored. However the increasing use of grain for feeding to pigs, poultry, beef cattle and dairy cows has led to an important national research project entitled “Premium Grains for Livestock”. Two of the objectives of this project are to determine the compositional and functional characteristics of grains which influence their nutritional quality for the various classes of livestock, and to adopt rapid and objective analytical tests for these quality criteria. NIR has been used in this project firstly to identify a set of grain samples from a large population of breeders' lines which showed a wide spectral variation, and hence a potentially wide variation in nutritional value. The selected samples were not only subjected to an extensive array of chemical, physical and in vitro analyses, but also were grown out to produce sufficient quantities of grain to feed to animals in vivo studies. Additional grains were also strategically selected from farms in order to include the effect of weather damage, such as rain, drought and frost. In this study to date, NIR calibrations have been derived or attempted, on both ground and whole grains, for in vivo dry matter digestibility (DMD), pepsin-cellulase dry matter disappearance, protein, fat, acid detergent fibre, neutral detergent fibre, starch, in sacco DMD and in vitro assays to simulate starch digestion in the lumen and small intestine. Results so far indicate high calibration accuracy for chemical components (SECV 0.3 to 2.6%) and very promising statistics for in vivo DMD (SECV 1.8, $R^2$ 0.93, SD 7.0, range 61.9 to 92.3, n=60). There appears to be some potential for NIR to estimate some in vitro properties, depending upon the accuracy of reference methods and appropriate sample populations. Current work is in progress to extend the range of grains with in vivo DMD values (a very laborious and expensive process) and to increase the robustness of the various NIR calibrations, with the aim of implementing uniform testing procedures for nutritional value of grains throughout Australia.

  • PDF

Near infrared spectroscopy for classification of apples using K-mean neural network algorism

  • Muramatsu, Masahiro;Takefuji, Yoshiyasu;Kawano, Sumio
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1131-1131
    • /
    • 2001
  • To develop a nondestructive quality evaluation technique of fruits, a K-mean algorism is applied to near infrared (NIR) spectroscopy of apples. The K-mean algorism is one of neural network partition methods and the goal is to partition the set of objects O into K disjoint clusters, where K is assumed to be known a priori. The algorism introduced by Macqueen draws an initial partition of the objects at random. It then computes the cluster centroids, assigns objects to the closest of them and iterates until a local minimum is obtained. The advantage of using neural network is that the spectra at the wavelengths having absorptions against chemical bonds including C-H and O-H types can be selected directly as input data. In conventional multiple regression approaches, the first wavelength is selected manually around the absorbance wavelengths as showing a high correlation coefficient between the NIR $2^{nd}$ derivative spectrum and Brix value with a single regression. After that, the second and following wavelengths are selected statistically as the calibration equation shows a high correlation. Therefore, the second and following wavelengths are selected not in a NIR spectroscopic way but in a statistical way. In this research, the spectra at the six wavelengths including 900, 904, 914, 990, 1000 and 1016nm are selected as input data for K-mean analysis. 904nm is selected because the wavelength shows the highest correlation coefficients and is regarded as the absorbance wavelength. The others are selected because they show relatively high correlation coefficients and are revealed as the absorbance wavelengths against the chemical structures by B. G. Osborne. The experiment was performed with two phases. In first phase, a reflectance was acquired using fiber optics. The reflectance was calculated by comparing near infrared energy reflected from a Teflon sphere as a standard reference, and the $2^{nd}$ derivative spectra were used for K-mean analysis. Samples are intact 67 apples which are called Fuji and cultivated in Aomori prefecture in Japan. In second phase, the Brix values were measured with a commercially available refractometer in order to estimate the result of K-mean approach. The result shows a partition of the spectral data sets of 67 samples into eight clusters, and the apples are classified into samples having high Brix value and low Brix value. Consequently, the K-mean analysis realized the classification of apples on the basis of the Brix values.

  • PDF

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF