• Title/Summary/Keyword: spectral ratio method

Search Result 302, Processing Time 0.021 seconds

Automated Velocity Measurement Technique for Unconsolidated Marine Sediment (해양퇴적물의 자동음파전달속도 측정장치)

  • Kim, Dae-Choul;Kim, Gil-Young;Seo, Young-Kyo;Ha, Deock-Ho;Ha, In-Chul;Yoon, Young-Seok;Kim, Jeng-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.400-404
    • /
    • 1999
  • The conventional mercury delay method to measure compressional wave velocity of unconsolidated sediment is inconvenient because the signal must be analyzed on the oscilloscope and the mercury column has to be calibrated between measurements. We developed an automated compressional wave velocity measurement technique by connecting an oscilloscope and a PC with a GPIB (General Purpose Interface Bus) card. The GPIB card buses signals from the oscilloscope to the PC where the signal from a sample is analyzed and compared to the input pulse thereby the compressional wave velocity of the sample is computed and recorded automatically. Differences between the mercury delay method and the automated measurement technique are negligible except the slightly greater velocity in the automated measurement technique. We concluded that the new technique can be used to measure the velocity for unconsolidated marine sediment. It also has an advantage to calculate sediment attenuation through the processing of waveform using the spectral ratio technique.

  • PDF

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

The Development of Signal Processing Software for Single-and Multi-Voxel MR Spectroscopy (단위용적 및 다용적 기법 자기공명분광 신호처리 분석 소프트웨어의 개발)

  • Paik, Moon-Young;Lee, Hyun-Yong;Shin, Oun-Jae;Eun, Choong-Ki;Mu, Chi-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.544-555
    • /
    • 2002
  • The aim of this study is to develop the $^1H$-MRS data postprocessing software for both single-voxel and multi-voxel technique, which plays and important role as a diagnostic tool in clinical field. This software is based on graphical user interface(GUI) under windows operating system of personal computer(PC). In case of single-voxel MRS, both of raw data in time-domain and spectrum data in frequency-domain are simultaneously displayed in a screen. Several functions such as DC correction, zero filling, line broadening, Lorentz-Gauss filtering and phase correction, etc. are included to increase the quality of spectrum data. In case of multi-voxel analysis, spectroscopic image reconstructed by 3-D FFT was displayed as a spectral grid and overlapped over previously obtained T1- or T2-weighted image for the spectra to be spatially registered with the image. The analysis of MRS peaks were performed by obtaining the ratio of peak area. In single-voxel method, statistically processed peak-area ratios of MRS data obtained from normal human brain are presented. Using multi-voxel method, MR spectroscopic image and metabolite image acquired from brain tumor are demonstrated.

The Study of Driving Fatigue using HRV Analysis (HRV 분석을 이용한 운전피로도에 관한 연구)

  • 성홍모;차동익;김선웅;박세진;김철중;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The job of long distance driving is likely to be fatiguing and requires long period alertness and attention, which make considerable demands of the driver. Driving fatigue contributes to driver related with accidents and fatalities. In this study, we investigated the relationship between the number of hours of driving and driving fatigue using heart rate variability(HRV) signal. With a more traditional measure of overall variability (standard deviation, mean, spectral values of heart rate). Nonlinear characteristics of HRV signal were analyzed using Approximate Entropy (ApEn) and Poincare plot. Five subjects drive the four passenger vehicle twice. All experiment number was 40. The test route was about 300Km continuous long highway circuit and driving time was about 3 hours. During the driving, measures of electrocardiogram(ECG) were performed at intervals of 30min. HRV signal, derived from the ECG, was analyzed using time, frequency domain parameters and nonlinear characteristic. The significance of differences on the response to driving fatigue was determined by Student's t-test. Differences were considered significant when a p value < 0.05 was observed. In the results, mean heart rate(HRmean) decreased consistently with driving time, standard deviation of RR intervals(SDRR), standard deviation of the successive difference of the RR intervals(SDSD) increased until 90min. Hereafter, they were almost unchanging until the end of the test. Normalized low frequency component $(LF_{norm})$, ratio of low to high frequency component (LF/HF) increased. We used the Approximate Entropy(ApEn), Poincare plot method to describe the nonlinear characteristics of HRV signal. Nonlinear characteristics of HRV signals decreased with driving time. Statistical significant is appeared after 60 min in all parameters.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

Estimation of Subsurface Structure and Ground Response by Microtremor (상시미동에 의한 지하구조와 지반응답의 추정)

  • Hwang, Min-Woo;Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.380-392
    • /
    • 2002
  • The purpose of the present study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to strong ground motion. To accomplish the purpose, the current status of microtremor study are reviewed and microtremors recorded at several stations are analysed. First of all, the stability of microtremor is examined through the analysis of microtremors recorded for 80 seconds per hour during the time from 10 p.m. to 6 a.m. for eight hours at night time. It is found that the shape of microtremor spectra of low frequency below 10Hz is approximately invariable with time and the spectra contain informations about subsurface structure. The subsurface structures estimated from the predominant frequency determined from the recorded microtremors are compared with the known ones from geophysical surveys at several stations in Kyungju. The comparison of structures shows rough agreements at most stations. Horizontal to vertical spectral ratio(HVSR) technique for microtremor has been proposed as an indirect method to determine ground response to strong ground motion. The HVSR for microtremors recorded in Kyungju is calculated and compared with theoretical transfer function calculated from the known structures. The comparison shows rough coincidence of the peak frequency of spectra between them.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF

Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth: Proton Exchange Capacity, Elemental Composition and 13C NMR Spectrum (깊이별 토양 휴믹산과 풀빅산의 특성 분석: 양성자교환용량, 원소성분비, 13C NMR 스펙트럼)

  • Shin, Hyun-Sang;Lee, Chang-Hoon;Rhee, Dong-Sock;Chung, Kun-Ho;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.283-291
    • /
    • 2003
  • Humic and fulvic acids present in soils of different depth were extracted and their acidic functional groups and structural characteristics were analyzed and compared. The purpose of this study was to present a basic data needed to evaluate the effect of humic substances on depth distribution and migrational behaviour of radioactive elements deposited on soil. Acidic functional groups of the humic and fulvic acids were analyzed by pH titration method, and their proton exchange capacity (PEC, $mq\;g^{-1}$) and average $pK_a$ values were obtained. Structural characteristics of the humic and fulvic acids were analyzed using their CPMAS $^{13}C$ NMR spectra and elemental composition data. pH titration data showed that fulvic acids have higher acidic functional group contents ranging from 5.5 to $7.0meq\;g^{-1}$ compared with that of humic acids ($3.8{\sim}4.8meq\;g^{-1}$). From depth profiles, it has been found that PEC values of humic acids in deeper soil (> 8 cm) were higher than those at the surface soils. Elemental compositions (H/C ratio) and spectral features ($C_{arom}/C_{aliph}$ ratio) obtained from CPMAS $^{13}C$ NMR spectra showed that the aromatic character in humic acids was a relatively higher than that of fulvic acids, while lower in carboxyl carbon content. The aromatic character and carboxyl carbon contents of humic acids tend to increase as soil depth increased, but those of fulvic acid showed little differences by the soil depth range.