• Title/Summary/Keyword: spectral peak

Search Result 505, Processing Time 0.026 seconds

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Analysis of Uniform Hazard Spectra for Metropolises in the Korean Peninsula (국내 주요 광역 도시에 대한 등재해도 스펙트럼 분석)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • The uniform hazard spectra for seven major cities in Korea, Seoul, Daejeon, Daegu, Busan, Gwangju, Ulsan, and Inchon are suggested. Probabilistic seismic hazard analyses were performed using the attenuation equations derived from seismology research in Korea since 2000 and the seismotectonic models selected by expert assessment. For the estimation of the uniform hazard spectra, the seismic hazard curves for several frequencies and PGAs were calculated by using the spectral attenuation equations. The seismic hazards (annual exceedance probability) calculated for the 7 metropolises ranged from about $1.4305{\times}0^{-4}/yr$ to $1.7523{\times}10^{-4}/yr$ and averaged out at about $1.5902{\times}10^{-4}/yr$ with a log standard deviation of about 0.085 at 0.2 g. The uniform hazard spectra with recurrence intervals of 500, 1000, and 2500 years estimated by using the calculated mean seismic hazard on the frequencies presented peak values at 10.0 Hz, and the log standard deviations of the difference between metropolises ranged from about 0.013 to 0.209. In view of the insignificant difference between the estimated uniform hazard spectra obtained for the considered metropolises, the mean uniform hazard spectrum was estimated. This mean uniform hazard spectrum is expected to be used as input seismic response spectrum for rock sites in Korea.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Low-Frequency Electromagnetic Leakage Signal Analysis According to Fundamental Operations of Smartphones (스마트폰 기본 동작 모드에 따른 저주파 대역 누설 전자파 신호 특성 분석)

  • Lee, Young-Jun;Park, Heesun;Kwon, YoungHyoun;Lee, Jaeki;Choi, Ji-Eun;Cho, Sangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1108-1119
    • /
    • 2016
  • This paper presents the spectral analysis and radiation pattern of low-frequency electromagnetic(EM) leakage signals according to the fundamental operations of smartphones. The EM leakage signals generated by the activation of four I/O sensor modules such as a touch-screen, a camera, a microphone and a speaker are captured by the commercial near-field magnetic probe with 1cm spatial resolution. The analysis results show that the leakage of the EM wave occurs strongly around the activated I/O sensor modules, AP(Application Processor) and memory modules. Also, the distinguishable frequency characteristic is shown in each spectrum of EM leakage signals.

Structural and Optical Properties of CuS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장시킨 CuS 박막의 구조적 및 광학적 특성)

  • Shin, Donghyeok;Lee, SangWoon;Son, Chang Sik;Son, Young Guk;Hwang, Donghyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • CuS (copper sulfide) thin films having the same thickness of 100nm were deposited on the glass substrates using by radio frequency (RF) magnetron sputtering method. RF powers were applied as a process variable for the growth of CuS thin films. The structural and optical properties of CuS thin films deposited under different power conditions (40-100W) were studied. XRD analysis revealed that all CuS thin films had hexagonal crystal structure with the preferential growth of (110) planes. As the sputtering power increased, the relative intensity of the peak with respect to the (110) planes decreased. The peaks of the two bands (264cm-1 and 474cm-1) indicated in the Raman spectrum exactly matched the typical spectral values of the covellite (CuS). The size and shape of the grains constituting the surface of the CuS thin films deposited under the power condition ranging from 40W to 80W hardly changed. However, the spacing between crystal grains tended to increase in proportion to the increase in sputtering power. The maximum transmittance of CuS thin films grown at 40W to 80W ranged from 50 % to 51 % based on 580nm wavelength, and showed a relatively small decrease of 48% at 100W. The band gap energy of the CuS thin films decreased from 2.62eV (at 40W) to 2.56eV (at 100W) as the sputtering power increased.

Characteristics of Long Period Resonant Oscillations around Chukpyon Harbor (죽변항 수역의 장주기 수면진동 특성)

  • 정원무;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.193-203
    • /
    • 1996
  • Long period waves were measured at two stations outside and inside Chukpyon Harbor using two pressure-type wave gauges for one week that covers storm sea period. Based on the collected data the characteristics of long-period resonant oscillations were analysed: the resonant period corresponding to the peak spectral density are slightly different from one to the component wave period with the largest amplification ratio, and the latter period is suggested as that of the first resonant mode. From the analysed field data and numerical modeling, the first resonant mode of Chukpyon Harbor region appeared to be around 12 minutes with amplification ratio of 7, whose amplitude varies 10-20 cm inside of the harbour, and also the second mode appeared to be around 6 minutes. The waves of 2-3 minute periods were resonated apparently in the harbour, which is considered to be generated from group-bounded irregular waves and non-linear wave-wave interaction etc. The linearly decreasing reflection coefficients used in the numerical modeling appeared to be an alternative in calculating reflected waves in harbor.

  • PDF

Cathode Luminescence Characteristics of $ZnGa_2O_4$ Phosphors with the doped molar ratio of Mn (Mn 첨가에 따른 $ZnGa_2O_4$ 형광체의 발광특성)

  • Hong, Beom-Joo;Lee, Seung-Kyu;Kwon, Sang-Jik;Kim, Kyung-Hwan;Park, Yong-Seo;Cho, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.463-465
    • /
    • 2005
  • The $ZnGa_2O_4$:Mn phosphor was synthesized through solid-state reactions at the various molar ratio of Mn from 0.002 % to 0.01 %. Structural and optical properties of the $ZnGa_2O_4$:Mn phosphor was investigated by using X-ray diffraction (XRD), and cathodoluminescence (CL) measurements. The XRD patterns show that the Mn-doped $ZnGa_2O_4$ has a (311) main peak and a spinel phase. Also the emission wavelength shifts from 420 to 510 nm in comparison with $ZnGa_2O_4$ when Mn is doped in $ZnGa_2O_4$. These results indicate that $ZnGa_2O_4$:Mn phosphors hold promise for potential applications in field-emission display devices with high brightness operating in green spectral regions.

  • PDF

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites

  • Lim, Young-Ran;Han, Songhee;Kim, Joo-Hwan;Park, Hyoung-Goo;Lee, Ga-Young;Le, Thien-Kim;Yun, Chul-Ho;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.171-176
    • /
    • 2017
  • Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.

Differential Diagnosis of Brain Diseases Using In Vivo Proton Magnetic Resonance Spectroscopy at 3 Tesla: A Preliminary Study

  • Shen, Yu-Lan;Kang, Heoung-Keun;Kim, Tae-Hoon;Sundaram, Thirunavukkarasu;Kim, Hyeong-Jung;Jeong, Gwang-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.64-83
    • /
    • 2009
  • The purpose of this study was to evaluate the usefulness of in vivo 3T $^1H$ MRS with short TE for prescreening various brain diseases. Together with ten normal volunteers, 12 brain tumor patients(2 lymphomas, 5 malignant gliomas) and 5(benign meningiomas) and 10 brain ischemic disease patients(6 acute and 4 subacute infarctions) participated. Lymphomas showed increased intensities of Cho and Lac. Likewise, gliomas showed increased Cho and Lac, but with decreased NAA and ${\beta}\;{\gamma}$-Glx; in higher grade of gliomas, Lac, Cho, mI and Lip predominantly increased with decrease of NAA. Benign meningiomas showed increased Cho, Lac and ${\beta}\;{\gamma}$-Glx; with decreased of NAA. The alanine peak at 1.47 ppm is a neuronal marker for meningiomas. Infarctions showed increased Lac and Lip and decreased NAA, ${\alpha}$-Glx and ${\beta}\;{\gamma}$-Glx where Lac increased with decreased of ${\alpha}$-Glx in acute, and Cho, Lac and Lip increased with decrease of NAA in subacute. Elevated Lac and decreased NAA levels were more aggravated in subacute. Clinical application of the $^1H$ MRS with short TE at 3T is able to povide valuable spectral information for prescreening various brain diseases by monitoring the changes of disease-specific cerebral metabolite concentrations in vivo, and consequently, it can be applicable to assessment of differential diagnosis and malignancy as well.