DOI QR코드

DOI QR Code

Differential Diagnosis of Brain Diseases Using In Vivo Proton Magnetic Resonance Spectroscopy at 3 Tesla: A Preliminary Study

  • Shen, Yu-Lan (Department of Radiology Chonnam National University Medical School) ;
  • Kang, Heoung-Keun (Department of Radiology Chonnam National University Medical School) ;
  • Kim, Tae-Hoon (Department of Biomedical Engineering Chonnam National University Hospital) ;
  • Sundaram, Thirunavukkarasu (Department of Biomedical Engineering Chonnam National University Hospital) ;
  • Kim, Hyeong-Jung (Department of Biomedical Engineering Chonnam National University Hospital) ;
  • Jeong, Gwang-Woo (Department of Radiology Chonnam National University Medical School)
  • Published : 2009.12.20

Abstract

The purpose of this study was to evaluate the usefulness of in vivo 3T $^1H$ MRS with short TE for prescreening various brain diseases. Together with ten normal volunteers, 12 brain tumor patients(2 lymphomas, 5 malignant gliomas) and 5(benign meningiomas) and 10 brain ischemic disease patients(6 acute and 4 subacute infarctions) participated. Lymphomas showed increased intensities of Cho and Lac. Likewise, gliomas showed increased Cho and Lac, but with decreased NAA and ${\beta}\;{\gamma}$-Glx; in higher grade of gliomas, Lac, Cho, mI and Lip predominantly increased with decrease of NAA. Benign meningiomas showed increased Cho, Lac and ${\beta}\;{\gamma}$-Glx; with decreased of NAA. The alanine peak at 1.47 ppm is a neuronal marker for meningiomas. Infarctions showed increased Lac and Lip and decreased NAA, ${\alpha}$-Glx and ${\beta}\;{\gamma}$-Glx where Lac increased with decreased of ${\alpha}$-Glx in acute, and Cho, Lac and Lip increased with decrease of NAA in subacute. Elevated Lac and decreased NAA levels were more aggravated in subacute. Clinical application of the $^1H$ MRS with short TE at 3T is able to povide valuable spectral information for prescreening various brain diseases by monitoring the changes of disease-specific cerebral metabolite concentrations in vivo, and consequently, it can be applicable to assessment of differential diagnosis and malignancy as well.

Keywords

References

  1. Bihan D. L., Invest Radiol. 27, 6-11 (1992) https://doi.org/10.1097/00004424-199212002-00002
  2. Kim S. Y., Woo D. C., Bang E. J., et al. J. Kor Magn Reson. 12, 14-25 (2008)
  3. Damadian R., Science 171, 1151-53 (1971) https://doi.org/10.1126/science.171.3976.1151
  4. Tovi M, Thuomas K. A., Bergstrom K., et al. Acta Radiologica Supplementum 369, 161-63 (1986)
  5. Barker P. B., Lin D. D. M., Prog Nucl Magn Reson Spectrosc. 49, 99-128 (2006) https://doi.org/10.1016/j.pnmrs.2006.06.002
  6. Chiang I. C., Kuo Y. T., Lu C. Y., et al. Neuroradiology 46, 619-27 (2004)
  7. Cousins J. P., Am J Roentgenol. 164, 1337-47 (1995) https://doi.org/10.2214/ajr.164.6.7754871
  8. Braunova Z., Kasparova S., Mlynarik V., et al. Cell Mol Neurobiol. 20, 703-15 (2000) https://doi.org/10.1023/A:1007002925592
  9. Laptook A. R., Corbett R. J., Sterett R., Garcia D., Tollefsbol G., Pediatr Res.38, 919-25 (1995) https://doi.org/10.1203/00006450-199512000-00015
  10. Weiner M. W., Invest Radiol. 23, 253-61 (1988) https://doi.org/10.1097/00004424-198804000-00003
  11. Howe F. A., Maxwell R. J., Saunders D. E., Brown M. M., Griffiths J. R., Magn Reson Q. 9, 31-59 (1993)
  12. Sappey-Marinier D., Calabrese G., Hetherington H. P., et al. Magn Reson Med. 26, 313-27 (1992) https://doi.org/10.1002/mrm.1910260211
  13. Burtscher I. M., Skagerberg G., Geijer B., Englund E., Stahlberg F., Holtas S., Am J Neuroradiol 21, 84-93 (2000)
  14. Poptani H., Gupta R. K., Roy R., Pandey R., Jain V. K., Chhabra D. K., Am J Neuroradiol 16, 1593-603 (1995)
  15. Weybright P., Sundgren P. C., Maly P., et al. Am J Roentgenol 185, 1471-76 (2005) https://doi.org/10.2214/AJR.04.0933
  16. Choi C. B., Hong S. T., Choe B. Y., et al. J Kor Magn Reson. 10, 105-14 (2006)
  17. Jeong G.. W., Kang H. K., Concepts Magn Resonance 18A, 146-156 (2003) https://doi.org/10.1002/cmr.a.10071
  18. Overloop K., Van Hecke P., Vanstapel F., et al. NMR Biomed. 9, 315-21 (1996) https://doi.org/10.1002/(SICI)1099-1492(199610)9:7<315::AID-NBM429>3.0.CO;2-Z
  19. Radda G. K., Rajagopalan B., Taylor D. J., Magn Reson Q. 5, 122-51 (1989)
  20. Christiansen P., Henriksen O., Stubgaard M., Gideon P., Larsson H. B., Magn Reson Imaging 11, 107-18 (1993) https://doi.org/10.1016/0730-725X(93)90418-D
  21. Bottomley P. A., Radiology 170, 1-15 (1989) https://doi.org/10.1148/radiology.170.1.2642336
  22. Castillo M., Kwock L., Mukherji S. K., AJNR Am J Neuroradiol 17, 1-15 (1996)
  23. Hashimoto K., Engberg G., Shimizu E., Nordin C., Lindstrom L. H., Iyo M., BMC Psychiatry 5, 6-10 (2005) https://doi.org/10.1186/1471-244X-5-6
  24. Gillard J. H., Barker P. B., van Zijl P. C., Bryan R. N., Oppenheimer S. M., Am J Neuroradiol 17, 873-86 (1996)
  25. Barker P. B., Seminars in Cerebrovascular Diseases and Stroke 1, 331-42 (2001) https://doi.org/10.1053/scds.2001.29101
  26. Bartha R., Drost D. J., Menon R. S., Williamson P. C., Magn Reson Med. 44, 185-92 (2000) https://doi.org/10.1002/1522-2594(200008)44:2<185::AID-MRM4>3.0.CO;2-V
  27. Barker P. B., Hearshen D. O., Boska M. D., Magn Reson Med. 45, 765-69 (2001) https://doi.org/10.1002/mrm.1104
  28. Weybright P., Ma1y P., Gomez-Hassan D., Blaesing C., Sundgren P. C., Neuroradiology 46, 541-49 (2004)
  29. Barker P. B., Ann Neurol 49, 423-24 (2001) https://doi.org/10.1002/ana.90
  30. Danielsen E. R., Ross B., Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases. New York, Basel MARCEL DEKKER, INC. 6. (1999)
  31. Clark J. B., Developmental Neuroscience 20, 271-76 (1998) https://doi.org/10.1159/000017321
  32. Ott D., Hennig J., Ernst T., Radiology 186, 745-72 (1993) https://doi.org/10.1148/radiology.186.3.8430183
  33. Kantarci K., Knopman D. S., Dickson D. W., et al. Radiology 248, 210-20 (2008) https://doi.org/10.1148/radiol.2481071590
  34. Tien R. D., Lai P. H., Smith J. S., Lazeyras F., Am J Roentgenol 167, 201-09 (1996) https://doi.org/10.2214/ajr.167.1.8659372
  35. Negendank W. G., Sauter R., Brown T. R., Evelhoch J. L., Falini A., J Neurosurg. 84, 449-58 (1996) https://doi.org/10.3171/jns.1996.84.3.0449
  36. Meyerand M. E., Pipas J. M., Mamourian A., Tosteson T. D., Dunn J.F., Am J Neuroradiol 20, 2-3 (1999)
  37. Kuesel A. C., Sutherland G. R., Halliday W., Smith I. C., NMR Biomed. 7, 149-55 (1994) https://doi.org/10.1002/nbm.1940070308
  38. Maxwell R. J., Martinez-Perez I., Cerdan S., et al. Magn Reson Med. 39, 869-77 (1998) https://doi.org/10.1002/mrm.1910390604
  39. Michaelis T., Merboldt K. D., Bruhn H., Hanicke W., Frahm J., Radiology 187, 219-27 (1993) https://doi.org/10.1148/radiology.187.1.8451417
  40. Kwock L., Smith J. K., Castillo M., et al. Technol Cancer Res Treat. 1, 17-28 (2002) https://doi.org/10.1177/153303460200100103

Cited by

  1. Simultaneous Spectral Resolution and Sensitivity Enhancement in MR spectrum: Maximum Likelihood Deconvolution Reconstruction vol.15, pp.2, 2011, https://doi.org/10.6564/JKMRS.2011.15.2.157