• Title/Summary/Keyword: spectral methods

Search Result 1,070, Processing Time 0.029 seconds

Spectral Response of $TiO_{2}$/Se : Te Heterojunction for Color Sensor (컬러센서를 위한 $TiO_{2}$/Se : Te 이종접합의 스펙트럼 응답)

  • Woo, Jung-Ok;Park, Wug-Dong;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-108
    • /
    • 1993
  • $TiO_{2}$/Se : Te heterojunction for color sensor has been fabricated by RF reactive sputtering and thermal evaporation methods onto glass substrate. The optimum deposition condition of $TiO_{2}$ films was such that RF power was 120 W, substrate temperature was $100^{\circ}C$, oxygen concentration was 50%, working pressure was 50 mTorr for the $TiO_{2}$ film thickness of $1000{\AA}$. In this case, the optical transmittance of $TiO_{2}$ film at 550 nm-wavelength was 85%, resistivity was $2{\times}10^9{\Omega}{\cdot}cm$, refractive index was 2.3, and optical bandgap was 3.58 eV. The composition ratio of 0 to Ti by AES analysis was 1.7. When $TiO_{2}$ films were annealed at $400^{\circ}C$ for 30 min. in $O_{2}$ ambient, the optical transmittance of $TiO_{2}$ films at the wavelength range of $300{\sim}580$ nm was improved from 0 to 25%. When Se : Te films were annealed at $190^{\circ}C$ for 1 min., photosensitivity under illumination of 1000 lux was 0.75. The optical bandgap of Se : Te films was 1.7 eV. The structures of Se : Te films were the hexagonal with (100) and (110) orientation. The spectral response of a-Se was improved by the addition of Te, especially in the long wavelength region. The $TiO_{2}$/Se : Te heterojunction showed wide spectral response, and more improved one than that of a-Si film in the blue light region.

  • PDF

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

POTENTIAL OF NIRS FOR SUPPORTING BREEDING AND CULTIVATION OF MEDICINAL AND SPICE PLANTS

  • Schulz, Hartwig;Steuer, Boris;Kruger, Hans
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1162-1162
    • /
    • 2001
  • Whereas NIR spectroscopy has been applied in agriculture for more than 20 years, few studies refer to those plant substances occurring only in smaller amounts. Nevertheless there is a growing interest today to support efficiently activities in the production of high-quality medicinal and spice plants by this fast and non-invasive method. Therefore, it was the aim of this study to develop new NIR methods for the reliable prediction of secondary metabolites found as valuable substances in various plant species. First, sophisticated NIR methods were established to perform fast quality analyses of intact fennel, caraway and dill fruits deriving from single-plants [1]. Later on, a characterization of several leaf drugs and the corresponding fresh material has been successfully performed. In this context robust calibrations have been developed for dried peppermint, rosemary and sage leaves for the determination of their individual essential oil content and composition [2]. A specially adopted NIR method has been developed also for the analysis of carnosic acid in the leaves of numerous rosemary and sage gene bank accessions. Carnosic acid is an antioxidative substance for which several health promoting properties including cancer preservation are assumed. Also some other calibrations have been developed for non-volatile substances such as aspalathin (in unfermented rooibos leaves), catechins (in green tea) and echinacoside (in different Echinacea species) [3]. Some NIR analyses have also been successfully performed on fresh material, too. In spite of the fact that these measurements showed less accuracy in comparison to dried samples, the calibration equations are precise enough to register the individual plant ontogenesis and genetic background. Based on the information received, the farmers and breeders are able to determine the right harvest time (when the valuable components have reached their optimum profile) and to select high-quality genotypes during breeding experiments, respectively. First promising attempts have also been made to introduce mobile diode array spectrometers to collect the spectral data directly on the field or in the individual natural habitats. Since the development of reliable NIRS methods in this special field of application is very time-consuming and needs continuous maintenance of the calibration equations over a longer period, it is convenient to supply the corresponding calibration data to interested user via NIRS network. The present status of all activities, preformed in this context during the last three years, will be presented in detail.

  • PDF

Effects of variety, region and season on near infrared reflectance spectroscopic analysis of quality parameters in red wine grapes

  • Esler, Michael B.;Gishen, Mark;Francis, I.Leigh;Dambergs, Robert G.;Kambouris, Ambrosias;Cynkar, Wies U.;Boehm, David R.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1523-1523
    • /
    • 2001
  • The wine industry requires practical methods for objectively measuring the composition of both red wine grapes on the vine to determine optimal harvest time; and of freshly harvested grapes for efficient allocation to vinery process streams for particular red wine products, and to determine payment of contract grapegrowers. To be practical for industry application these methods must be rapid, inexpensive and accurate. In most cases this restricts the analyses available to measurement of TSS (total soluble solids, predominantly sugars) by refractometry and pH by electropotentiometry. These two parameters, however, do not provide a comprehensive compositional characterization for the purpose of winemaking. The concentration of anthocyanin pigment in red wine grapes is an accepted indicator of potential wine quality and price. However, routine analysis for total anthocyanins is not considered as a practical option by the wider wine industry because of the high cost and slow turnaround time of this multi-step wet chemical laboratory analysis. Recent work by this ${group}^{l,2}$ has established the capability of near infrared (NIR) spectroscopy to provide rapid, accurate and simultaneous measurement of total anthocyanins, TSS and pH in red wine grapes. The analyses may be carried out equally well using either research grade scanning spectrometers or much simpler reduced spectral range portable diode-array based instrumentation. We have recently expanded on this work by collecting thousands of red wine grape samples in Australia. The sample set spans two vintages (1999 and 2000), five distinct geographical winegrowing regions and three main red wine grape varieties used in Australia (Cabernet Sauvignon, Shiraz and Merlot). Homogenized grape samples were scanned in diffuse reflectance mode on a FOSE NIR Systems6500 spectrometer and subject to laboratory analysis by the traditional methods for total anthocyanins, TSS and pH. We report here an analysis of the correlations between the NIR spectra and the laboratory data using standard chemometric algorithms within The Unscrambler software package. In particular, various subsets of the total data set are considered in turn to elucidate the effects of vintage, geographical area and grape variety on the measurement of grape composition by NIR spectroscopy. The relative ability of discrete calibrations to predict within and across these differences is considered. The results are then used to propose an optimal calibration strategy for red wine grape analysis.

  • PDF

Nonlinear Conte-Zbilut-Federici (CZF) Method of Computing LF/HF Ratio: A More Reliable Index of Changes in Heart Rate Variability

  • Vernon Bond, Jr;Curry, Bryan H;Kumar, Krishna;Pemminati, Sudhakar;Gorantla, Vasavi R;Kadur, Kishan;Millis, Richard M
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.207-212
    • /
    • 2016
  • Objectives: Acupuncture treatments are safe and effective for a wide variety of diseases involving autonomic dysregulation. Heart rate variability (HRV) is a noninvasive method for assessing sympathovagal balance. The low frequency/high frequency (LF/HF) spectral power ratio is an index of sympathovagal influence on heart rate and of cardiovascular health. This study tests the hypothesis that from rest to 30% to 50% of peak oxygen consumption, the nonlinear Conte-Zbilut-Federici (CZF) method of computing the LF/HF ratio is a more reliable index of changes in the HRV than linear methods are. Methods: The subjects of this study were 10 healthy young adults. Electrocardiogram RR intervals were measured during 6-minute periods of rest and aerobic exercise on a cycle ergometer at 30% and 50% of peak oxygen consumption ($VO_{2peak}$). Results: The frequency domain CZF computations of the LF/HF ratio and the time domain computations of the standard deviation of normal-to-normal intervals (SDNN) decreased sequentially from rest to 30% $VO_{2peak}$ (P < 0.001) to 50% $VO_{2peak}$ (P < 0.05). The SDNN and the CZF computations of the LF/HF ratio were positively correlated (Pearson's r = 0.75, P < 0.001). fast Fourier transform (FFT), autoregressive (AR) and Lomb periodogram computations of the LF/HF ratio increased only from rest to 50% $VO_{2peak}$. Conclusion: Computations of the LF/HF ratio by using the nonlinear CZF method appear to be more sensitive to changes in physical activity than computations of the LF/HF ratio by using linear methods. Future studies should determine whether the CZF computation of the LF/HF ratio improves evaluations of pharmacopuncture and other treatment modalities.

Derivation and Evaluation of Surface Reflectance from UAV Multispectral Image for Monitoring Forest Vegetation (산림 식생 모니터링을 위한 무인기 다중분광영상의 반사율 산출 및 평가)

  • Lee, Hwa-Seon;Seo, Won-Woo;Woo, Choongshik;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1149-1160
    • /
    • 2019
  • In this study, two radiometric correction methods deriving reflectance from UAV multispectral image for monitoring forest vegetation were applied and evaluated. Multispectral images were obtained from a small multispectral camera having 5 spectral bands. Reflectance were derived by applying the two methods: (1) the direct method using downwelling irradiance measurement and (2) the empirical line correction method by linking a set of field reflectance measured simultaneous with the image capture. Field reflectance were obtained using a spectroradiometer during the flight and used for building the linear equation for the empirical method and for the validation of image reflectance derived. Although both methods provided the high correlations between field reflectance and image-derived reflectance, their distributions were somewhat different. While the direct method provided rather stable and consistent distribution of reflectance all over the entire image area, the empirical method showed very unstable and inconsistent reflectance distribution. The direct method would be more appropriate for relatively wide area that requires more time to acquire image and may vary in downwelling irradiance and atmospheric conditions.

Comparison of Pixel-based Change Detection Methods for Detecting Changes on Small Objects (소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석)

  • Seo, Junghoon;Park, Wonkyu;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.177-198
    • /
    • 2021
  • Existing change detection researches have been focused on changes of land use and land cover (LULC), damaged areas, or large vegetated and water regions. On the other hands, increased temporal and spatial resolution of satellite images are strongly suggesting the feasibility of change detection of small objects such as vehicles and ships. In order to check the feasibility, this paper analyzes the performance of existing pixel-based change detection methods over small objects. We applied pixel differencing, PCA (principal component analysis) analysis, MAD (Multivariate Alteration Detection), and IR-MAD (Iteratively Reweighted-MAD) to Kompsat-3A and Google Map images taken within 10 days. We extracted ground references for changed and non-changed small objects from the images and used them for performance analysis of change detection results. Our analysis showed that MAD and IR-MAD, that are known to perform best over LULC and large areal changes, offered best performance over small object changes among the methods tested. It also showed that the spectral band with high reflectivity of the object of interest needs to be included for change analysis.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation of Soil Physical and Chemical Properties in the Central USA (미국 중부 토양의 이화학적 특성 추정을 위한 광 확산 반사 신호 전처리 및 캘리브레이션)

  • La, Woo-Jung;Sudduth, Kenneth A.;Chung, Sun-Ok;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.430-437
    • /
    • 2008
  • Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were to investigate effects of preprocessing of reflectance data and determine the accuracy of the reflectance approach for estimating physical and chemical properties of selected Missouri and Illinois, USA surface soils encompassing a wide range of soil types and textures. Diffuse reflectance spectra of air-dried, sieved samples were obtained in the laboratory. Calibrations relating spectra to soil properties determined by standard methods were developed using partial least squares (PLS) regression. The best data preprocessing, consisting of absorbance transformation and mean centering, reduced estimation errors by up to 20% compared to raw reflectance data. Good estimates ($R^2=0.83$ to 0.92) were obtained using spectral data for soil texture fractions, organic matter, and CEC. Estimates of pH, P, and K were not good ($R^2$ < 0.7), and other approaches to estimating these soil chemical properties should be investigated. Overall, the ability of diffuse reflectance spectroscopy to accurately estimate multiple soil properties across a wide range of soils makes it a good candidate technology for providing at least a portion of the data needed in site-specific management of agriculture.

A Study on Relations between Skeletal Maturity and Heart Rate Variability (골성숙도와 심박 변이도의 상관성에 대한 연구)

  • Lee, Hye-Lim;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Objectives The purpose of this study is to examine the relationship between skeletal maturity and heart rate variability (HRV) based on the bone age and HRV parameters. Methods 103 children from 6 years to 17 years of age, who do not have any disease-related symptom, and visited ${\bigcirc}{\bigcirc}$ oriental medicine hospital, are measured based on their bone age and short-term spectral analysis of HRV. Results 1. Skeletal maturity was significantly correlated with HRV indices: mean HRT and SDNN. As the skeletal maturity increases, the mean HRT was decreased and the SDNN was increased. 2. When classifying according to the skeletal maturity score, the mean HRT was higher in the 'below -0.4' group compare to '-0.3~0.7' group and '0.8~1.9' group. SDNN was higher in the '0.8~1.9' group compare to '-0.3~0.7' group, 'below -0.4' group 3. When classifying according to the sex, age and secondary sexual characteristics, as the skeletal maturity was increased, the mean HRT was significantly decreased and the SDNN was significantly increased only in the boys who did not develop secondary sexual characteristics. Conclusions Skeletal maturity could be statistically significant with HRV indices, especially to the boys and the children than the girls and the teenagers.