• Title/Summary/Keyword: spectral method.

Search Result 2,630, Processing Time 0.03 seconds

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

Matrix-based Chebyshev spectral approach to dynamic analysis of non-uniform Timoshenko beams

  • Wang, W.Y.;Liao, J.Y.;Hourng, L.W.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.669-682
    • /
    • 2011
  • A Chebyshev spectral method (CSM) for the dynamic analysis of non-uniform Timoshenko beams under various boundary conditions and concentrated masses at their ends is proposed. The matrix-based Chebyshev spectral approach was used to construct the spectral differentiation matrix of the governing differential operator and its boundary conditions. A matrix condensation approach is crucially presented to impose boundary conditions involving the homogeneous Cauchy conditions and boundary conditions containing eigenvalues. By taking advantage of the standard powerful algorithms for solving matrix eigenvalue and generalized eigenvalue problems that are embodied in the MATLAB commands, chebfun and eigs, the modal parameters of non-uniform Timoshenko beams under various boundary conditions can be obtained from the eigensolutions of the corresponding linear differential operators. Some numerical examples are presented to compare the results herein with those obtained elsewhere, and to illustrate the accuracy and effectiveness of this method.

The Classification of Music Styles on the Basis of Spectral Contrast Features

  • Wang, Yan-bing
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In this paper, we propose that the contrast features of octave spectrum can be used to show spectral contrast features of some music clips. It shows the relative spectral distribution rather than average spectrum. From the experiment, it can be seen the method of spectral contrast features has a good performance in classification of music styles. Another comparative experiment shows that the method of spectral contrast features can better distinguish different music styles than the method of MFCC features that commonly used previously in the classification system of music styles.

HMM-based Speech Recognition using DMS Model and Double Spectral Feature (DMS 모델과 이중 스펙트럼 특징을 이용한 HMM에 의한 음성 인식)

  • Ann Tae-Ock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.649-655
    • /
    • 2006
  • This paper proposes a HMM-based recognition method using DMSVQ(Dynamic Multi-Section Vector Quantization) codebook by DMS model and double spectral feature, as a method on the speech recognition of speaker-independent. LPC cepstrum parameter is used as a instantaneous spectral feature and LPC cepstrum's regression coefficient is used as a dynamic spectral feature These two spectral features are quantized as each VQ codebook. HMM using DMS model is modeled by receiving instantaneous spectral feature and dynamic spectral feature by input. Other experiments to compare with the results of recognition experiments using proposed method are implemented by the various conventional recognition methods under the equivalent environment of data and conditions. Through the experiment results, it is proved that the proposed method in this paper is superior to the conventional recognition methods.

  • PDF

Detection of Microphytobenthos in the Saemangeum Tidal Flat by Linear Spectral Unmixing Method

  • Lee Yoon-Kyung;Ryu Joo-Hyung;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.405-415
    • /
    • 2005
  • It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.

Spectral element method in the analysis of vibrations of overhead transmission line in damping environment

  • Dutkiewicz, Maciej;Machado, Marcela
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.291-303
    • /
    • 2019
  • In the paper the analysis of natural vibrations of the transmission line with use of spectral elements and the laboratory experiments is performed. The purpose of the investigation is to analyze the natural vibrations of the transmission line and compare with the results obtained in the numerical simulations. Particular attention is paid to the hysteretic and aerodynamic damping analysis. Sensitivity of the wave number is performed for changing of the tension force, as well as for the different damping parameters. The numerical model is made using the Spectral Element Method. In the spectral model, for various parameters of stiffness, damping and tension force, the system response is checked and compared with the results of the accelerations obtained in the measurements. A frequency response functions (FRF) are calculated. The credibility of the model is assessed through a validation process carried out by comparing graphical plots of FRF and time history analysis and numerical values expressing differences in acceleration amplitude (MSG), phase angle differences (PSG) and differences in acceleration and phase angle total (CSG) values. The next aspect constituting the purpose of this paper is to present the wide possibilities of modelling and simulation of slender conductors using the Spectral Element Method. The obtained results show good accuracy in the range of both experimental measurements as well as simulation analysis. The paper emphasizes the ease with which the sensitivity of the conductor and its response to changes in density of spectral mesh division, tensile strength or material damping can be studied.

NONCONFORMING SPECTRAL ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS

  • Kumar, N. Kishore
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.761-781
    • /
    • 2014
  • An exponentially accurate nonconforming spectral element method for elasticity systems with discontinuities in the coefficients and the flux across the interface is proposed in this paper. The method is least-squares spectral element method. The jump in the flux across the interface is incorporated (in appropriate Sobolev norm) in the functional to be minimized. The interface is resolved exactly using blending elements. The solution is obtained by the preconditioned conjugate gradient method. The numerical solution for different examples with discontinuous coefficients and non-homogeneous jump in the flux across the interface are presented to show the efficiency of the proposed method.

Spectral Element Vibration Analysis of the Pipeline Conveying Internal Flow (내부유동을 갖는 파이프 진동의 스펙트럴요소해석)

  • Oh, Hyuck-Jin;Kang, Kwan-Ho;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.294-301
    • /
    • 2003
  • It is of often important to accurately predict the flow-induced vibration or dynamic instability of a pipeline conveying internal high speed flow in advance, which requires a very accurate solution method. In this study, first the dynamic equations for the axial and transverse vibrations of a pipeline are reduced from a set of pipe-dynamic equations derived in the previous study and then the spectral element model is formulated. The accuracy of the spectral element method (SEM) is then verified by comparing its results with the results obtained by finite element method (FEM). It is shown that the present spectral element model provides very accurate solutions by using an extremely small number of degrees-of-freedom when compared with FEM. The dynamics of a sample pipeline is investigated with varying the axial tension and the speed of internal flow.

KORAN DIGIT RECOGNITION IN NOISE ENVIRONMENT USING SPECTRAL MAPPING TRAINING

  • Ki Young Lee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1015-1020
    • /
    • 1994
  • This paper presents the Korean digit recognition method under noise environment using the spectral mapping training based on static supervised adaptation algorithm. In the presented recognition method, as a result of spectral mapping from one space of noisy speech spectrum to another space of speech spectrum without noise, spectral distortion of noisy speech is improved, and the recognition rate is higher than that of the conventional method using VQ and DTW without noise processing, and even when SNR level is 0 dB, the recognition rate is 10 times of that using the conventional method. It has been confirmed that the spectral mapping training has an ability to improve the recognition performance for speech in noise environment.

  • PDF