• Title/Summary/Keyword: spectral design

검색결과 679건 처리시간 0.021초

Symmetric Balance Incomplete Block Design Code의 Spectral Efficiency (Spectral Efficiency 0f Symmetric Balance Incomplete Block Design Codes)

  • 지윤규
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.117-123
    • /
    • 2013
  • 본 논문은 symmetric balance incomplete block design(BIBD) code의 BER=$10^{-9}$을 만족하는 spectral efficiency를 구하였다. 이 계산 결과 effective power가 큰 경우 ($P_{sr}=-10$ dBm)는 m=2로 고정시키고 q값을 변화시키는 ideal BIBD code구성이 효율적이었다. 이와 반대로 effective power가 작은 경우 ($P_{sr}=-25$ dBm)는 ideal BIBD code 구성 보다는 q > 2인 값을 취하고 m값을 변화시키는 설계가 더 효율적임을 알 수 있었다.

원본 지반운동 시간이력에 따른 스펙트럼 부합 시간이력의 특성 (Characteristics of Spectral Matched Ground Motions Time Histories According to Seed Ground Motion Selection)

  • 최다슬;지혜연;김정한
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.43-52
    • /
    • 2021
  • According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Recovery of spectral absolute acceleration and spectral relative velocity from their pseudo-spectral counterparts

  • Papagiannopoulos, George A.;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.489-508
    • /
    • 2013
  • Design spectra for damping ratios higher than 5% have several important applications in the design of earthquake-resistant structures. These highly damped spectra are usually derived from a 5%-damped reference pseudo-acceleration spectrum by using a damping modification factor. In cases of high damping, the absolute acceleration and the relative velocity spectra instead of the pseudo-acceleration and the pseudo-velocity spectra should be used. This paper elaborates on the recovery of spectral absolute acceleration and spectral relative velocity from their pseudo-spectral counterparts. This is accomplished with the aid of correction factors obtained through extensive parametric studies, which come out to be functions of period and damping ratio.

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G.;Werner, John S.;Siminovitch, Michael;Papamichael, Kostantinos;Han, Jeongwon;Park, Soobeen
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.507-516
    • /
    • 2014
  • We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

동적 원심모형실험에 의한 사질토에 근입된 말뚝지지 기초의 응답 스펙트럼 분석 (Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Sand)

  • 박용부;박종배;김상연;김동수
    • 토지주택연구
    • /
    • 제5권1호
    • /
    • pp.35-40
    • /
    • 2014
  • 현재 국내 내진설계기준에서 제시하고 있는 지반분류 방법 및 지반 증폭계수는 기반암이 주로 30m 이내에 위치하는 일반적인 국내 지반특성을 제대로 반영하지 못하고 있다. 따라서, 본 연구에서는 사질토 지반에 근입된 비정형 말뚝기초(PHC 500, 중심 간격 3D, 4D, 5D)와 상부 구조물에 대한 동적 원심모형 실험을 실시하여 자유장과 기초판의 응답 스펙트럼 결과를 비교하였다. 단주기 영역인 1초 이내 주기에서는 기초판 및 지표면 자유장의 측정 스펙트럼이 SC 및 SD 지반의 표준설계스펙트럼 가속도보다 크게 나타났다. 1.5초 이상의 장주기 영역에서는 실험에서 측정된 스펙트럼 가속도가 SC 지반의 표준설계응답스펙트럼 가속도보다 작게 나타났고 상부구조물 유무, 지반 근입 심도, 기초 및 자유장 조건에 의한 스펙트럼 가속도 차이가 거의 발생하지 않았다. 따라서, 실제 아파트에 해당하는 1.5초 이상의 장주기에서는 국내 지반조건을 고려하여 측정된 스펙트럼 가속도를 설계에 적용하면 표준설계스펙트럼을 적용할 때 보다 경제적인 설계가 가능한 것으로 나타났다.