• Title/Summary/Keyword: spectral density

Search Result 828, Processing Time 0.027 seconds

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.

A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum (사봉형 스펙트럼을 이용한 라이저 피로해석 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

A Study on Accelerated Fatigue Life Testing for Industrial Inverter (산업용 인버터의 가속 피로수명 평가에 관한 연구)

  • Lee, Sanghoon;Kim, Won-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

2-D Forward Modeling on an Explosion Data in Korea (한반도의 폭파자료에 대한 2-D 수치 모델링 연구)

  • Kang, Ik-Bum;Cho, Kwang-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-139
    • /
    • 2007
  • To enhance capability on discerning local and regional seismic phases, such as, Pn, Pg, Sn, Rg, etc, within the crust, 2-D numerical forward modeling will be applied to the data obtained from local seismic stations by simulating almost all waves including not only body wave but also surface wave generated without having to explicitly include them under consideration of Q factor. In this study, after getting rid of instrumental response by deconvolution, pseudo-spectral method instead of relying on typical numerical methods, such as, FEM(Finite Element Method) and FDM(Finite Difference Method), will be implemented for 2-D numerical forward modeling by considering velocities of P-wave and S-wave, density, and Q factors. Ultimately, the Power of reaching the enhanced capability on discerning local and regional seismic phases will make it easier for us to identify the seismic source, whether it is originated from man-made explosion or pure earthquake.

  • PDF

Performance Analysis of Decode-and-Forward Relaying with Partial Relay Selection for Multihop Transmission over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.433-441
    • /
    • 2010
  • Multihop transmission is a promising technique that helps in achieving broader coverage (excellent network connectivity) and preventing the impairment of wireless channels. This paper proposes a cluster-based multihop wireless network that makes use of the advantages of multihop relaying, i.e., path loss gain, and partial relay selection in each hop, i.e., spatial diversity. In this partial relay selection, the node with the maximum instantaneous channel gain will serve as the sender for the next hop. With the proposed protocol, the transmit power and spectral efficiency can be improved over those in the case of direct transmission and conventional multihop transmission. Moreover, at a high signal-to-noise ratio (SNR), the performance of the system with at least two nodes in each cluster is dependent only on the last hop and not on any of the intermediate hops. For a practically feasible decode-and-forward relay strategy, a compact expression for the probability density function of the end-to-end SNR at the destination is derived. This expression is then used to derive closed-form expressions for the outage probability, average symbol error rate, and average bit error rate for M-ary square quadrature amplitude modulation as well as to determine the spectral efficiency of the system. In addition, the probability of SNR gain over direct transmission is investigated for different environments. The mathematical analysis is verified by various simulation results for demonstrating the accuracy of the theoretical approach.

EUV Imaging Spectroscopic Study of a CME Source Region by HINODE EIS

  • Kim, Il-Hoon;Sung, Suk-Kyung;Lee, Kyoung-Sun;Lee, Chung-Woo;Moon, Yong-Jae;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2010
  • The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode provide us with excellent imaging spectroscopic data with very good spatial and spectral resolutions, which can be used for detecting Doppler flows in transition region and coronal lines as well as diagnosing plasma properties such as temperature, density, and non-thermal velocity. In this study we have made an EUV-imaging spectroscopic study of the source region of a partial halo coronal mass ejection (CME) that occurred on 2007 July 9 in NOAA 10961. Dopplergrams are obtained before and after the CME eruption using 12 EIS spectral lines (Log T= 4.9~7.2). Major results are summarized as follows. First, it is noted that either red shifts disappeared or blue shifts newly appeared for all spectral lines lower than Log T =6.0. Second, there were significant intensity increases for all wavelengths. Third, there were no significant variations in non-thermal motions for all wavelengths. We found one interesting bright point that newly appeared after the CME eruption. We discuss the implication on the results in terms of the CME eruption.

  • PDF

Unbiased spectroscopic study of the Cygnus Loop with LAMOST

  • Seok, Ji Yeon;Koo, Bon-Chul;Zhao, Gang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2018
  • We present a spectroscopic study of the Galactic supernova remnant (SNR) Cygnus Loop using the fifth Data Release (DR5) of LAMOST. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) features both a large field-of-view (about 20 deg2) and a large aperture (~4 m in diameter), which allow us to obtain 4000 spectra simultaneously. Its wavelength coverage ranges from ${\sim}3700{\AA}$ to $9000{\AA}$ with a spectral resolution of $R{\approx}1800$. The Cygnus Loop is a prototype of middle-aged SNRs, which has advantages of being bright, large in angular size (${\sim}3.8^{\circ}{\times}3^{\circ}$), and relatively unobscured by dust. Along the line of sight of the Cygnus Loop, 2747 LAMOST DR5 spectra are found in total, which are spatially distributed over the entire remnant. Among them, 778 spectra are selected based on the presence of emission lines (i.e., [O III]${\lambda}5007$, Ha, and [S II]${\lambda}{\lambda}$ 6717, 6731) for further visual inspection. About half of them (336 spectra) show clear spectral features to confirm their association with the remnant, 370 spectra show stellar features only, and 72 spectra are ambiguous and need further investigation. For those associated with the remnant, we identify emission lines and measure their intensities. Spectral properties considerably vary within the remnant, and we compare them with theoretical models to derive physical properties of the SNR such as electron density and temperature, and shock velocity. While some line ratios are in good agreement with model prediction, others cannot be explained by simple shock models with a range of shock velocities. We discuss these discrepancies between model predictions and the observations and finally highlight the powerfulness of the LAMOST data to investigate spatial variations of physical properties of the Cygnus Loop.

  • PDF

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.