• Title/Summary/Keyword: spectral decay rate

Search Result 7, Processing Time 0.02 seconds

Predictive Equations of Ground Motions in Korea

  • Noh, Myung-Hyun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • Predictive equations of ground motions are one of the most important factors in the seismic hazard analysis. Unfortunately, studies on predictive equations of ground motions in Korea had been hampered due to the lack of seismic data. To overcome the lack of data, seismologists adopted the stochastic method based on the seismological model. Korean predictive equations developed by the stochastic method show large differences in their predictions. It was turned out through the analysis of the existing studies that the main sources of the differences are the uncertainties in the (Brune) stress drop and spectral decay rate . Therefore, it is necessary to focus the future research on the reduction of the uncertainties in the two parameters.

  • PDF

SPECTRAL PROPERTIES OF THE NEUMANN-POINCARÉ OPERATOR AND CLOAKING BY ANOMALOUS LOCALIZED RESONANCE: A REVIEW

  • SHOTA FUKUSHIMA;YONG-GWAN JI;HYEONBAE KANG;YOSHIHISA MIYANISHI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.87-108
    • /
    • 2023
  • This is a review paper on recent development on the spectral theory of the Neumann-Poincaré operator. The topics to be covered are convergence rate of eigenvalues of the Neumann-Poincaré operator and surface localization of the single layer potentials of its eigenfunctions. Study on these topics is motivated by their relations with the cloaking by anomalous localized resonance. We review on this topic as well.

X-Ray Diffractional and IR Spectral Characteristics in Brown-Rotted Woods Decayed by T. palustris and G. trabeum (갈색부후목재(褐色腐朽木材)의 X선(線) 회절(回折) 및 IR 분석(分析))

  • Choi, Ji-Ho;Han, Ok-Soo;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.55-60
    • /
    • 1992
  • Japanese red pine (Pinus densiflora S. et. Z.) decayed by brown-rot fungi Tyromyces palustris and Gloeophyllum trabeum were subjected to X-ray diffraction analysis and infrared spectral examinations. Pine woods decayed by T. palustris showed the increase of relative crystallinity in the initial stage of degradation. When the weight loss was above 30%, then the crystallinity went down slowly. In contrast, the wood samples degraded by G. trabeum showed the decrease of crystallinity from the beginning stage of decay. The changes of crystallinity in brown-rotted woods suggested that the degradation rate of crystalline cellulose was varied with the brown rot fungal species. X-ray diffraction analyses also indicated that crystalline cellulose was much more slowly broken down than the amorphous one. The most notable difference in the IR spectra of the brown-rotted wood samples was that the adsorption band centered at 1,730$cm^{-1}$ was significantly diminished in the decayed wood. indicating the degradation of hemicellulose by brown-rot fungi. However, no marked changes of intensities at 1,000, 1,060 and 1,040$cm^{-1}$ were observed in the brown rotted wood samples, suggesting that crystal line cellulose was resistant against the attack by brown rot fungi.

  • PDF

Fabrication of High Sensitive Photoconductive Multilayer Using Se,As and Te and its Application (Se, As 및 Te를 이용한 고감도 다층 광도전막의 제작 및 그 응용)

  • 박기철;이건일;김기완
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.422-429
    • /
    • 1988
  • The photoconductive multilayer of Se-As(hole blocking layer)/Se-As-Te (photoconductive layer) /Se-As (layer for supporiting hole transport)/Se-As(layer or controlling total capacitance)/Sb2S3(electron blocking layer) was fabricated and its electrical and optical properties were investigated. The photoconductive multilayer is made of evaporated a-Se as the base material, doped with As and Te to prevent the crystallization of a-Se and to enhance red sensitivity, respectively. The multilayer with good image reproducibility has the following deposition condition. The first layer has the thickness of 250\ulcornerat the deposition rate of 250\ulcornersec. The second layer has the thickness of 800\ulcornerat the deposition rate of 250\ulcornersec. The third layer has the thickness of 125\ulcornerat the deposition rate of 250\ulcornersec. The fourth layer has the thickness of 1700\ulcornerunder the Ar gas ambient of 50x10**-3torr. The image pick-up tube, employing this multilayer demonstrates the following characteristics. The photosensitivity is 0.8, the resolution limit is above 300TV line, and the decay lag is about 7%. And spectral response convers the whole visible range. Therfore the application to color TV camera is expected.

  • PDF

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

Light transmission in nanostructures

  • Kim, D. S.;Park, Q-H.;S. H. Han;Ch. Lienau
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.113-115
    • /
    • 2003
  • We investigate transmission of light in nanoscale structures. We present spatial and temporal domain measurements of the dephasing of surface plasmon excitations in metal films with periodic nano-hole arrays. By probing coherent spatial SP propagation lengths of a few f1. $\mu$m and an ultrafast decay of the SP polarization on a 10 fs timescale, we demonstrate that the SP transmission peaks are homogeneously broadened by the SP radiative lifetime. The pronounced wavelength and hole size dependence of the dephasing rate shows that the microscopic origin of the conversion of SP into light is a Rayleigh-like scattering by the periodic hole array. We have experimentally studied the dephasing of surface plasmon excitations in metallic nano-hole arrays. By relating nanoscopic SP propagation, ultrafast light transmission and optical spectra, we demonstrate that the transmission spectra of these plasmonic bandgap structures are homogeneously broadened. The spectral line shape and dephasing time are dominated by Rayleigh scattering of SP into light and can varied over a wide range by controlling the resonance energy and/or hole radius. This opens the way towards designing SP nano-optic devices and spatially and spectrally tailoring light -matter interactions on nanometer length scales.

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.