• Title/Summary/Keyword: spectral compensation

Search Result 111, Processing Time 0.026 seconds

Analysis of the Influence of Mutual Relation of Optical Pulse Frequency Chirp and Kerr Effect on the Mid-Span Spectral Inversion Methods for the Long-Haul Optical Transmission (광 펄스 주파수 첩과 Kerr 효과의 상호 관계가 장거리 광 전송을 위한 MSSI 보상 기법에 미치는 영향 분석)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.898-906
    • /
    • 2002
  • In this paper, we investigated the improvement degree of transmission distance of the various initial frequency chirped optical pulse with 5 dBm initial power dependence on the various bit rate and fiber dispersion coefficient, when MSSI(Mid-Span Spectral Inversion) with the optimal pump power condition is adopted for the compensation method for optical pulse distortion. And we analyzed the influence of mutual relation of optical pulse frequency chirp and Kerr effect on the MSSI methods for the long-haul optical transmission through the computer simulation. We found that the compensation degree of distorted optical pulse varies as a consequence of the variation of combined phase modulation of self phase modulation(Kerr effect) and initial frequency chirp parameter dependence on the fiber dispersion coefficient. And we found that, if the transmission bit rate is increased k times, the dispersion coefficient value of dispersion shift fiber is decreased $2^k$ times so as to be almost the same performance of the transmission system with k times lower bit rate.

Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with Path-Averaged Intensity Approximation Mid-Span Spectral Inversion (경로 평균 강도 근사 기법의 MSSI를 채택한 WDM 시스템에서 HNL-DSF를 갖는 광대역 광 위상 공액기)

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • We investigated the optimum pump light power compensating distorted WDM signal due to both chromatic dispersion and self phase modulation (SPM). The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system with path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and the excellent compensation is obtained when the pump light power of HNL-DSF OPC was selected to equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length. By this approach, it is verified the possibility to realize a long-haul high capacities WDM system by using PAIA MSSI compensation method, which have HNL-DSF OPC with optimal pump light power depending on transmission length.

  • PDF

Radiometric Calibration Method with Compensation of Nonlinearity of Detector for Hyper-Spectral Camera

  • Yang, Ji-Hyeon;Choi, Byung-In;Park, Hee Duk;Kim, Sohyun;Park, Yong Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.27-34
    • /
    • 2017
  • In this paper, we propose a novel radiometric calibration method which can effectively compensate the nonlinearity of the detector for hyper-spectral camera. In general, the detector of hyper-spectral camera can produce nonlinear output depending on radiance and integral time. The conventional radiometric calibration methods extract the imprecise radiance profile from the spectral profile of the target due to this nonlinearity. In our proposed method, we use a quadratic equation instead of a linear equation to describe the relation between output of detector and radiance. Then, we use a fractional function to compensate variation of integration time. Thus, our proposed method can extract more precise spectral profile of radiance than conventional radiometric calibration method.

A Robust Speech Recognition Method Combining the Model Compensation Method with the Speech Enhancement Algorithm (음질향상 기법과 모델보상 방식을 결합한 강인한 음성인식 방식)

  • Kim, Hee-Keun;Chung, Yong-Joo;Bae, Keun-Seung
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.115-126
    • /
    • 2007
  • There have been many research efforts to improve the performance of the speech recognizer in noisy conditions. Among them, the model compensation method and the speech enhancement approach have been used widely. In this paper, we propose to combine the two different approaches to further enhance the recognition rates in the noisy speech recognition. For the speech enhancement, the minimum mean square error-short time spectral amplitude (MMSE-STSA) has been adopted and the parallel model combination (PMC) and Jacobian adaptation (JA) have been used as the model compensation approaches. From the experimental results, we could find that the hybrid approach that applies the model compensation methods to the enhanced speech produce better results than just using only one of the two approaches.

  • PDF

Spectral Subtraction Using Spectral Harmonics for Robust Speech Recognition in Car Environments

  • Beh, Jounghoon;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.62-68
    • /
    • 2003
  • This paper addresses a novel noise-compensation scheme to solve the mismatch problem between training and testing condition for the automatic speech recognition (ASR) system, specifically in car environment. The conventional spectral subtraction schemes rely on the signal-to-noise ratio (SNR) such that attenuation is imposed on that part of the spectrum that appears to have low SNR, and accentuation is made on that part of high SNR. However, these schemes are based on the postulation that the power spectrum of noise is in general at the lower level in magnitude than that of speech. Therefore, while such postulation is adequate for high SNR environment, it is grossly inadequate for low SNR scenarios such as that of car environment. This paper proposes an efficient spectral subtraction scheme focused specifically to low SNR noisy environment by extracting harmonics distinctively in speech spectrum. Representative experiments confirm the superior performance of the proposed method over conventional methods. The experiments are conducted using car noise-corrupted utterances of Aurora2 corpus.

Compensation for Spectral Variance in Scan-Based Planar Acoustical Holography (스캐닝 평면 음향 홀로그래피에서의 스펙트럴 분산 보정)

  • ;;J. S. Bolton
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.520-524
    • /
    • 2002
  • Multi-reference, scan-based Acoustical Holography is a useful measurement technique when insufficient microphones are available to measure a complete hologram at once. When the sound sources are stationary, the whole hologram can be constructed by joining together sub-holograms captured using a relatively small scan array. Here that approach is extended by the development of a formulation that explicitly includes the acoustical transfer functions between the reference microphones and the scanning microphones. Based on those expressions, a compensation procedure of spectral variance due to source-non-stationarity is proposed. It has been verified both numerically and experimentally that this procedure can help suppress spatially distributed noise caused by the source level non-stationarity that is always present in a measurement.

  • PDF

Generation of 10 GHz Short Pulses from Continuous Wave Laser Using Cascaded Intensity and Phase Modulators and a Single Mode Optical Fiber (광 강도/위상변조기 및 단일모드 광섬유를 이용한 CW 광원으로부터 10 GHz 초단 펄스발생)

  • Sung, Hyun-Ju;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.364-368
    • /
    • 2012
  • We generate 10 GHz short pulses from a continuous wave laser at 1.5 um by cascaded intensity and phase modulation, followed by chirp compensation using a single mode fiber. The measured spectral and pulse widths are 0.64 nm and 5.7 ps respectively, resulting in the time-bandwidth product of 0.46.

Use of a Prism to Compensate the Image-shifting Error of the Acousto-optic Tunable Filter (음향광학변조필터의 이미지 이동 보상을 위한 프리즘 제안)

  • Ryu, Sung-Yoon;You, Jang-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.89-95
    • /
    • 2008
  • The Acousto-Optic Tunable Filter (AOTF) is a high-speed full-field monochromator which generates two spectrally filtered light beams with ordinary and extraordinary polarization state. Thus, AOTF is widely used to build full-field spectral imaging system or spectral domain interferometer. However, AOTF has a big problem that the angle of diffracted light changes according to the scanning of wavelength, which makes image shift on CCD plane In this paper, we propose an analytic design of prism system to compensate the image shift. The detailed analysis of light paths in a prism and basic experimental results are presented to verify our proposed compensation method. The experimental results agree with simulation results based on suggested prism model and image shift is minimized at optimal condition. Also, it can be extended to compensate the image shift for ordinary and extraordinary polarized light simultaneously.

Dispersion-Managed Link Configured with Repetitively Shaped Dispersion Maps and Embedded with Mid-span Spectral Inversion

  • Chung, Jae-Pil;Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.235-241
    • /
    • 2022
  • A dispersion map was proposed to improve the compensation effect of a distorted WDM (wavelength division multiplexed) channel in a dispersion-managed link coupled with optical phase conjugation. The dispersion map is an origin-symmetric structure around the optical phase conjugator in the middle of the transmission path. In addition, the dispersion map has a form in which a constant dispersion accumulation pattern is repeated regularly. Through simulation, we confirmed that the application of the origin-symmetric dispersion map with a repetitively shaped configuration was more effective in compensating for the distorted WDM channel than in the dispersion-managed link with a conventional dispersion map. In addition, we confirmed that the compensation effect could be increased when the cumulative dispersion distribution of the origin-symmetric distribution map had a positive value in the first half section and a negative value in the second half section. Further, we observed that as the number of repeated dispersion accumulation patterns increased, the residual dispersion per span should also be increased.

Compensation Characteristics or Distorted WDM Channel dependence on Variation of Fiber Dispersion (광섬유 분산 변동에 따른 왜곡된 WDM 채널의 보상 특성)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.719-726
    • /
    • 2004
  • In this paper, compensation characteristics of distorted WDM channel due to both chromatic dispersion and self phase modulation (SPM) is numerically investigated under the assumptions of non-uniformly distributed fiber dispersion, in order to inspect the application of mid-span spectral inversion (MSSI) to any exact transmission links. The MSSI is compensation method used in this approach. This method has an optical phase conjugator (OPC) placed in mid-way of total transmission length to compensate distorted WDM channels. It is confirmed that MSSI will become applicable to long-haul WDM systems by controlling input light power of transmission channels, when the averaged dispersion of both fiber sections with respect OPC was varied and distributed unequally each other. Applying MSSI to long-haul WDM system, it is possible to remove all in-line compensator, consequently it will be expected to reducing system cost.