• Title/Summary/Keyword: spectral classification

Search Result 470, Processing Time 0.022 seconds

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (III) - Modification of Desing Response Specra (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (III) - 설계응답스펙트럼 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.63-71
    • /
    • 2006
  • In the companion paper (II, Development of Site Classification System), new size classification system based on site periods $(T_G)$ was recommended for legions of shallow bedrock depth in Korea. Despite the site classification method was improved, the response spectrum would be required to be modified by adjusting the integration interval to calculate the site coefficients because the response spectra did not match well the average spectral accelerations obtained by site response analyses in the range of long periods. In this paper, new response spectra for each site categories were determined by adjusting the integration interval of long period site coefficient $F_v\;from\;0.4{\sim}2.0\;to\;0.4{\sim}1.5$ second. It matched well the average spectral accelerations and new response spectrum, and it was also improved compared to the current she classification system.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

An Empirical Study on Discrimination of Image Algorithm for Improving the Accuracy of Forest Type Classification -Case of Gyeongju Area Using KOMPSAT-MSC Image Data- (임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 실증 연구 -KOMPSAT-MSC를 이용한 경주지역을 대상으로-)

  • Jo, Yun-Won;Kim, Sung-Jae;Jo, Myung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • By applying NDVI(Normalized Difference Vegetation Index) and TCT(Tasseled-Cap Transformation) image algorithm on the basis of KOMSAP-2 MSC(Multi Spectral Camera) image(Jun. 12, 2007) for Naenam-myeon, Gyeongju city in this study, DN distribution map was drawn up. Discrimination analysis of image algorithm for the accuracy improvement of forest type classification was conducted through the comparative analysis between the distribution maps of NDVI and TCT DN, and forest field surveying data, and finally, the accuracy of the forest type classification was verified through the overlay analysis with the forest field surveying data. Through this study, it is thought that low cost and high efficiency will be able to be expected in the process of the examination for the automation practicality of the forest type classification and of the production of the accurate forest type classification map by using KOMPSAT-2 MSC image.

  • PDF

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF

Classification of Hyperspectral Images based on Gravity type Model (중력모델에 기반한 하이퍼스텍트럴 영상 분류)

  • Byun, Young-Gi;Lee, Jeong-Ho;Kim, Yong-Min;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.183-186
    • /
    • 2007
  • Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. Over the past several years, different algorithms for the classification of hyperspectral remote sensing images have been developed. In this study, we proposed method based on absorption band extraction and Gravity type model to solve hyperspectral image classification problem. In contrast to conventional methods that are based on correlation techniques, this method is simple and more effective. The proposed approach was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexiting SFF(Spectral Feature Fitting) classification method. The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.

  • PDF

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

Microphone Type Classification for Digital Audio Forgery Detection (디지털 오디오 위조검출을 위한 마이크로폰 타입 인식)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • In this paper we applied pattern recognition approach to detect audio forgery. Classification of the microphone types and models can help determining the authenticity of the recordings. Canonical correlation analysis was applied to extract feature for microphone classification. We utilized the linear dependence between two near-silence regions. To utilize the advantage of multi-feature based canonical correlation analysis, we selected three commonly used features to capture the temporal and spectral characteristics. Using three different microphones, we tested the usefulness of multi-feature based characteristics of canonical correlation analysis and compared the results with single feature based method. The performance of classification rate was carried out using the backpropagation neural network. Experimental results show the promise of canonical correlation features for microphone classification.

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.