• Title/Summary/Keyword: spectral changes

Search Result 422, Processing Time 0.027 seconds

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

One Year of GOCI-II Launch Present and Future (GOCI-II 발사 1년, 현재와 미래)

  • Choi, Jong-kuk;Park, Myung-sook;Han, Kyung-soo;Kim, Hyun-cheol;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1229-1234
    • /
    • 2021
  • GOCI-II, which succeeded the mission of GOCI, was successfully launched in February 2020 and is in operation. GOCI-II is expected to be highly useful in a wide range of fields, including detailed changes in the coastal seawater environment using improved spatial and spectral resolution, increased number of observation and full disk observation mode. This special issue introduces the assessment of the current GOCI-II data quality and the studies on the accuracy improvement and applications at this time of one year after launch and data disclosure. We expect that this issue can be an opportunity for GOCI-II data to be actively utilized not only in the ocean but also in various fields of land and atmosphere.

Portable titrator equipped spectroscopic detectors; Spectrator (분광학적 검출기가 내장된 휴대용 적정기: 스펙트레이터)

  • Shin, Jiwon;Chae, Gyoyoon;Kim, Yeajin;Kim, Sangho;Chae, Yoonsu;Chae, Won-Seok
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • During titration, several chemical reactions result in changes not only in the potential of chemicals, but also in the colors of the indicator. In a potentiometric titration, a titration curve is obtained by measuring the abrupt change in the potential at the endpoint. Generally, acid-base titration is performed by observing the color change caused by an indicator to determine the endpoint. The method of determining the endpoint by measuring the potential difference has been well established and commercialized; however, the devices that can obtain the endpoint by observing the color change are limited. Consequently, in this study, a simple and precise spectral endpoint detector was manufactured using a drop-counter comprising an infrared emitter and a phototransistor, a white light LED as the light source and photodetector, and an analog-to-digital converter (Arduino). Spectrator, a new named, showed excellent results in terms of the reproducibility of acid-base titration using thymol blue as an indicator. Herein, we present the results of the Spectrator-manufacturing process as well as the experimental results.

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Lewis-Lujan, Lidianys Maria;Rosas-Burgos, Ema Carina;Ezquerra-Brauer, Josafat Marina;Burboa-Zazueta, Maria Guadalupe;Assanga, Simon Bernard Iloki;del Castillo-Castro, Teresa;Penton, Giselle;Plascencia-Jatomea, Maribel
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.989-1002
    • /
    • 2022
  • Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.

Acceleration Amplification Analysis according to Changes in Laminar Shear Box Boundary Conditions (연성토조의 경계조건 변화에 따른 가속도 증폭 분석)

  • Jeong, Sugeun;Jin, Yong;Park, Kyungho;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.143-155
    • /
    • 2022
  • In this study, the response acceleration amplification according to different conditions was analyzed by changing the boundary condition of the soil called LSB (Laminar Shear Box), which is placed on a 1 g shaking table for earthquake simulation experiments. Experiments were carried out with different boundary conditions by fixing both sides of the LSB, and two samples were tested by installing an accelerometer at the same location. In addition, using DEEPSOIL v7 program, a one-dimensional ground response analysis was performed to compare and analyze with the free field condition. As a result, it was confirmed that the acceleration was amplified as it went from the lower layer to the upper layer, and as a result of comparing it with the ground response analysis, it was confirmed that it appeared similar to the analysis under the free field condition. As a result of the SA (Spectrum acceleration) analysis, a result similar to that of the ground response analysis was obtained, and in the case of fixing, it was confirmed that the PSA (Peak Spectral Acceleration) was further amplified.

Absolute Dimensions And Period Changes Of The Semi-Detached Algol Type Binary XZ Canis Minoris

  • Kim, Hye-Young;Kim, Chun-Hwey;Hong, Kyeongsoo;Jeong, Min-Ji;Park, Jang-Ho;Song, Mi-Hwa;Lee, Jae Woo;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2019
  • The first high-resolution spectroscopic and new multiband photometric observations of the semi-detached Algol type binary XZ CMi were performed at the Bohyunsan Optical Astronomy Observatory (BOAO) and the Sobaeksan Optical Astronomy Observatory (SOAO), respectively. A total of 34 spectra were obtained using the 1.8 m reflector of the BOAO equipped with the Bohyunsan Optical Echelle Spectrograph to construct the radial velocity (RV) curves of the eclipsing pair. New BVRI photometric light curves were also covered by using the SOAO 61cm reflector and a CCD camera. A detailed analysis of all eclipse timings shows that the orbital period of XZ CMi has varied in an upward parabolic variation superposed on a sinusoidal oscillation with a period of 38.0 yr and a semi-amplitude of 0.0071 days. From the spectral analysis, the effective temperature and the projected rotational velocity of the primary component were determined to be Teff,1 = 7387±161 K and v1sini = 122±6 km s-1, respectively. Our simultaneous synthesis of the double-lined RV and BVRI light curves gives the reliable system parameters of XZ CMi with a mass ratio (q) of 0.314, an orbital inclination (i) of 81.9 deg and a large temperature difference (∆T) of 2481 K. The individual masses and radii of both components are M1 = 1.91±0.08M, M2 = 0.60±0.02M, R1 = 1.60±0.02R, R2 = 1.13±0.02R, respectively. Although the primary component is located inside the δ Sct and γ Dor instability strips, no evidence of pulsation in the system was detected. The possible evolutionary status of XZ CMi is discussed.

  • PDF

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.