• 제목/요약/키워드: spectral band

Search Result 871, Processing Time 0.359 seconds

CAPABILITY OF THE FAST IMAGING SOLAR SPECTROGRAPH ON NST/BBSO FOR OBSERVING FILAMENTS/PROMINENCES AT THE SPECTRAL LINES Hα, Ca II 8542, AND Ca II K

  • Ahn, Kwang-Su;Chae, Jong-Chul;Park, Hyung-Min;Nah, Jak-Young;Park, Young-Deuk;Jang, Bi-Ho;Moon, Yong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.39-47
    • /
    • 2008
  • Spectral line profiles of filaments/prominences to be observed by the Fast Imaging Solar Spectrograph (FISS) are studied. The main spectral lines of interests are $H{\alpha}$, Ca II 8542, and Ca II K. FISS has a high spectral resolving power of $2{\times}10^5$, and supports simultaneous dual-band recording. This instrument will be installed at the 1.6m New Solar Telescope (NST) of Big Bear Solar Observatory, which has a high spatial resolution of 0.065" at 500nm. Adopting the cloud model of radiative transfer and using the model parameters inferred from pre-existing observations, we have simulated a set of spectral profiles of the lines that are emitted by a filament on the disk or a prominence at the limb. Taking into account the parameters of the instrument, we have estimated the photon count to be recorded by the CCD cameras, the signal-to-noise ratios, and so on. We have also found that FISS is suitable for the study of multi-velocity threads in filaments if the spectral profiles of Ca II lines are recorded together with $H{\alpha}$ lines.

A study on Reliability Analysis for Prediction Technology of Water Content in the Ground using Hyperspectral Informations (초분광정보를 이용한 지반의 함수비 예측 기술의 신뢰성 분석 연구)

  • Lee, Kicheol;Ahn, Heechul;Park, Jeong-Jun;Cho, Jinwoo;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.141-149
    • /
    • 2021
  • In this study, an laboratory experiment was performed for prediction technology of water content in the ground using hyperspectral information. And the spectral reflectance with a specific wavelength band was obtained according to the fine and water content. Through it, the spectral information was normalized with the spectral index of the existing literature, and the relationship with the fine and water contents and the reliability of the prediction technology were analyzed. As a result of analysis, the spectral reflectance is decreased when the water and fine contents are increased under the high water contents. In addition, the reliability of prediction technology of water content was evaluated by examining 7 different spectral index calculation methods. Among them, DVI showed relatively high prediction reliability and was superior to other calculation methods in terms of sensitivity.

The IGRINS Spectra of Late-Type Stars

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Yuk, In-Soo;Jeong, Ueejeong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2015
  • We present a library of high spectral resolution (R ~ 40,000) and high signal-to-noise ratio (S/N ~ 200) near-infrared spectra of ~50 late-type stars. The spectra of late-type stars were obtained with Immersion GRating INfrared Spectrograph (IGRINS) covering the full H and K band. The stars are mainly from MK standard stars which have well-defined spectral types and luminosity classes and cover wide ranges of effective temperatures and surface gravities. The spectra are corrected for telluric absorption lines and absolutely flux calibrated using the Two Micron All Sky Survey (2MASS) photometry. In this work, we present the preliminary results of spectroscopic diagnostics for stellar physical parameters. Our ultimate goal is to provide a library of near-infrared spectra of standard stars, which covers all spectral types and luminosity classes, with a high spectral resolution and high signal-to-noise ratio.

  • PDF

The Effects of Tramadol on Electroencephalographic Spectral Parameters and Analgesia in Rats

  • Jang, Hwan-Soo;Jang, Il-Sung;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • The effects of different doses of tramadol on analgesia and electroencephalographic (EEG) spectralparameters were compared in rats. Saline or tramadol 5, 10, 20 or 40 mg/kg was administered. The degree of analgesia was evaluated by tail-flick latency, and the degree of seizure was measured using numerical seizure score (NSS). Additionally, band powers, median power frequency and spectral edge frequency 95 were measured to quantify the EEG response. All doses of tramadol produced spike-wave discharge. Tramadol significantly and dose-dependently increased the analgesia, but these effects did not correspond with the changes in the EEG spectral parameters. NSS significantly increased in the Tramadol 20 and 40 mg/kg treatment groups compared to the Control and TRA5 groups, and two rats given 40 mg/kg had convulsions. In conclusion, tramadol dose-dependently increased the analgesic effect, and the 10 mg/kg dose appears to be a reliable clinical dose for analgesia in rats, but dose-dependent increases in analgesia and seizure severity did not correlate with EEG spectral parameters.

Analysis of Voice Quality Features and Their Contribution to Emotion Recognition (음성감정인식에서 음색 특성 및 영향 분석)

  • Lee, Jung-In;Choi, Jeung-Yoon;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.771-774
    • /
    • 2013
  • This study investigates the relationship between voice quality measurements and emotional states, in addition to conventional prosodic and cepstral features. Open quotient, harmonics-to-noise ratio, spectral tilt, spectral sharpness, and band energy were analyzed as voice quality features, and prosodic features related to fundamental frequency and energy are also examined. ANOVA tests and Sequential Forward Selection are used to evaluate significance and verify performance. Classification experiments show that using the proposed features increases overall accuracy, and in particular, errors between happy and angry decrease. Results also show that adding voice quality features to conventional cepstral features leads to increase in performance.

A Field Experiment Study on the Use of OSMI Wave Bands for Agricultural Applications

  • Hong, Suk-Young;Rim, Sang-Kyu;Jung, Won-Kyo
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.307-319
    • /
    • 1999
  • The aim of this study is to assess the OSMI (Ocean Scanning Multi-spectral Imager), whose central bands are 443nm, 490nm, 510nm, 555nm, 670nm, and 865nm, for agricultural applications. Radiance measurements, used to determine per cent reflectance of canopies and soils, were acquired with spectro-radiometers (Li-1800;330∼1,100nm, GER-SFOV;350∼2,500nm, and MSR-7000; 300∼2,500nm) in situ for crops and indoors for soils. OSMI equivalent bands and their ratio values were prepared(20nm interval for bands 1∼5; 40nm interval for band 6) by averaging spectral reflectance values to the real OSMI bands and analyzed as to crop growth parameters, leaf area index (LAI), total dry matter, and growth index in crops and physiochemical properties in soils. Spectral variations for each growth stage in rice and for crop discrimination in upland crops were significant statistically. In soils, clay and water content, CEC (Cation Exchange Capacity), free iron oxide, and some cation content were correlated with the OSMI equivalent bands. The result of this study shows OSMI wave bands would be promising for agricultural application in terms of spectral information and resolution.

MIMO-aided Efficient Communication Resource Scheduling Scheme in VDES

  • Sung, Juhyoung;Cho, Sungyoon;Jeon, Wongi;Park, Kyungwon;Ahn, Sang Jung;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2736-2750
    • /
    • 2022
  • As demands for the maritime communications increase, a variety of functions and information are required to exchange via elements of maritime systems, which leads communication traffic increases in maritime frequency bands, especially in VHF (Very High Frequency) band. Thus, effective resource management is crucial to the future maritime communication systems not only to the typical terrestrial communication systems. VHF data exchange system (VDES) enables to utilize more flexible configuration according to the communication condition. This paper focuses on the VDES communication system among VDES terminals such as shore stations, ship stations and aids to navigation (AtoN) to address efficient resource allocation. We propose a resource management method considering a MIMO (Multiple Input Multiple Output) technique in VDES, which has been widely used for modern terrestrial wireless networks but not for marine environments by scheduling the essential communication resources. We introduce the general channel model in marine environment and give two metrics, spectral and the energy efficiencies to examine our resource scheduling algorithm. Based on the simulation results and analysis, the proposed method provides a possibility to enhance spectral and energy efficiencies. Additionally, we present a trade-off relationship between spectral and energy efficiencies. Furthermore, we examine the resource efficiencies related to the imperfect channel estimation.

Analyzing the spectral characteristic and detecting the change of tidal flat area in Seo han Bay, North Korea using satellite images and GIS (위성영상과 GIS를 이용한 북한 서한만 지역의 간석지 분광특성 및 변화 탐지)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.44-54
    • /
    • 2005
  • In this study the tidal area in Seo han bay, North Korea was detected and extracted by using various satellite images (ASTER, KOMPSAT EOC, Landsat TM/ETM+) and GIS spatial analysis. Especially, the micro-landform was classified through the spectral characteristic of each satellite image and the change of tidal flat size was detected on passing year. For this, the spectral characteristics of eight tidal flat area in Korea, which are called as Seo han bay, Gwang ryang bay, Hae iu bay, Gang hwa bay, A san bay, Garorim bay, Jul po bay and Soon chun bay, were analyzed by using multi band of multi spectral satellite images such as Landsat TM/ETM+. Moreover, the micro-landform tidal flat in Seo han bay, North Korea was extracted by using ISODATA clustering based on the result of spectral characteristic. In addition, in order to detect the change of tidal flat size on passing years, the ancient topography map (1918-1920) was constructed as GIS DB. Also, the tidal flat distribution map based on the temporal satellite images were constructed to detect the tidal flat size for recent years. Through this, the efficient band to classify the micro-landform and detect its boundary was clarified and one possibility of KOMPSAT EOC application could be also introduced by extracting the spatial information of tidal flat efficiently.

  • PDF

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.