• Title/Summary/Keyword: spectral

Search Result 8,239, Processing Time 0.028 seconds

Characteristics of Photodetectors for spectral radiance measurements (분광복사휘도 측정용 광검출기의 특성 평가)

  • 서정철;박승남;김봉학
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2001
  • We have fabricated a spectroadiometric system to measure spectral radiance of optical sources and evaluated its characteristics such as spectral responsivity, nonlinearity, and so on. The measurement system with PMT, Si, InGaAs, and IR-enhanced InGaAs detectors has shown a good linearity and a wide spectral responsivity of 250∼2500 nm. This spectroradiometric system will be used as the primary national standard system of spectral radiance measurements.

  • PDF

3-D Surface Profile Measurement Using An Acousto-optic Tunable Filter Based Spectral Phase Shifting Technique

  • Kim, Dae-Suk;Cho, Yong-Jai
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.281-287
    • /
    • 2008
  • An acousto-optic tunable filter based 3-D micro surface profile measurement using an equally spaced 5 spectral phase shifting is described. The 5-bucket spectral phase shifting method is compared with a Fourier-transform method in the spectral domain. It can provide a fast measurement capability while maintaining high accuracy since it needs only 5 pieces of spectrally phase shifted imaging data and a simple calculation in comparison with the Fourier transform method that requires full wavelength scanning data and relatively complicated computation. The 3-D profile data of micro objects can be obtained in a few seconds with an accuracy of ${\sim}10nm$. The 3-D profile method also has an inherent benefit in terms of being speckle-free in measuring diffuse micro objects by employing an incoherent light source. Those simplicity and practical applicability is expected to have diverse applications in 3-D micro profilometry such as semiconductors and micro-biology.

Research on Noise Reduction Algorithm Based on Combination of LMS Filter and Spectral Subtraction

  • Cao, Danyang;Chen, Zhixin;Gao, Xue
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.748-764
    • /
    • 2019
  • In order to deal with the filtering delay problem of least mean square adaptive filter noise reduction algorithm and music noise problem of spectral subtraction algorithm during the speech signal processing, we combine these two algorithms and propose one novel noise reduction method, showing a strong performance on par or even better than state of the art methods. We first use the least mean square algorithm to reduce the average intensity of noise, and then add spectral subtraction algorithm to reduce remaining noise again. Experiments prove that using the spectral subtraction again after the least mean square adaptive filter algorithm overcomes shortcomings which come from the former two algorithms. Also the novel method increases the signal-to-noise ratio of original speech data and improves the final noise reduction performance.

Multi-spectral Mueller Matrix Imaging for Wheat Stripe Rust

  • Yang Feng;Tianyu He;Wenyi Ren;Dan Wu;Rui Zhang;Yingge Xie
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.192-200
    • /
    • 2024
  • Wheat stripe rust, caused by Puccinia striiformis, has reduced winter wheat yield globally for ages. In this work, multi-spectral Mueller matrix imaging with 37 measurements using the method of double rotatable quarter-wave plates was used to investigate wheat stripe rust. Individual Mueller matrix measurements were performed on incident monochromatic light with nine bands in the range of 430 to 690 nm. As a result, it was found that the infected area absorbed linearly polarized light and was sensitive to circularly polarized light in the spectral domain. Both linear depolarization and linear diattenuation images distinguished between wheat stripe rust and healthy tissue. The responsiveness of stripe rust to polarized light reveals the potential of using polarization imaging to detect plant diseases. This further suggests that the multi-spectral Mueller matrix imaging system provides us with an alternative approach to agricultural disease detection.

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Noisy Speech Recognition Based on Spectral Mapping Techniques (스펙트럼사상기법을 기초로 한 잡음음성인식)

  • Lee, Ki-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.39-45
    • /
    • 1995
  • This paper presents noisy speech recognition method based on spectral mapping techniques of speaker adaptation method. In the presented method, the spectral mapping training makes the spectral distortion of noisy speech reduced, and for the more correctively spectral mapping, let the adjustment window;s slope be adaptive to several word lengths. As a result of recognition experiment, the recognition rate is higher than that of the conventional method using VQ and DTW without noise processing. Even when SNR level is 0 dB, the recognition rate is 10 times more than that using the conventional method. It is confirmed that the speacker adaptation technique using the spectral mapping training has an ability to improve the recognition performance for noisy speech.

  • PDF

Development of a Hearing Impairment Simulator considering Frequency Selectivity of the Hearing Impaired (난청인의 주파수 선택도를 고려한 난청 시뮬레이터 개발)

  • Joo, S.I.;Kil, S.K.;Goh, M.S.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.94-102
    • /
    • 2009
  • In this paper, we propose a hearing impairment simulator considering reduced frequency selectivity of the hearing impaired, and verify it's performance through experiments. The reduced frequency selectivity was embodied by spectral smearing using linear prediction coding(LPC). The experiments are composed of 4 kinds of tests; pure tone test, speech reception threshold(SRT) test, and word recognition score(WRS) test without spectral smearing and with spectral smearing. The experiments of the hearing impairment simulator were performed with 9 subjects who have normal hearing. The amount of spectral smearing was controlled by LPC order. The percentile score of WRS test without smearing is $89.78{\pm}2.420%$. The scores of WRS with 24th LPC order and with 8th LPC order are $88.00{\pm}3.556%$ and $83.78{\pm}2.123%$ respectively. It is verified that WRS score is lowered by decreasing LPC order. This is a reasonable result considering that spectral smearing is getting heavier according to decreasing LPC order. It is confirmed that spectral smearing using LPC simulates the reduced frequency selectivity of the hearing impaired and affects the clearness of speech reception.

A study on extraction of the frames representing each phoneme in continuous speech (연속음에서의 각 음소의 대표구간 추출에 관한 연구)

  • 박찬응;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.174-182
    • /
    • 1996
  • In continuous speech recognition system, it is possible to implement the system which can handle unlimited number of words by using limited number of phonetic units such as phonemes. Dividing continuous speech into the string of tems of phonemes prior to recognition process can lower the complexity of the system. But because of the coarticulations between neiboring phonemes, it is very difficult ot extract exactly their boundaries. In this paper, we propose the algorithm ot extract short terms which can represent each phonemes instead of extracting their boundaries. The short terms of lower spectral change and higher spectral chang eare detcted. Then phoneme changes are detected using distance measure with this lower spectral change terms, and hgher spectral change terms are regarded as transition terms or short phoneme terms. Finally lower spectral change terms and the mid-term of higher spectral change terms are regarded s the represent each phonemes. The cepstral coefficients and weighted cepstral distance are used for speech feature and measuring the distance because of less computational complexity, and the speech data used in this experimetn was recoreded at silent and ordinary in-dorr environment. Through the experimental results, the proposed algorithm showed higher performance with less computational complexity comparing with the conventional segmetnation algorithms and it can be applied usefully in phoneme-based continuous speech recognition.

  • PDF

Sensitivity of Input Parameters in the Spectral Wave Model

  • Park, Hyo-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.