• Title/Summary/Keyword: speckle image

Search Result 198, Processing Time 0.031 seconds

Thermal Expansion Coefficient Measurement of STS430 by Laser Speckle Interferometry (레이저 스페클간섭법에 의한 STS430의 열팽창계수 측정)

  • 김경석;이항서;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.29-33
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,000$^{\circ}C$. Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 800$^{\circ}C$. There needs to measure the data up to 800$^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000$^{\circ}C$. In previous studies related to thermal strain analysis, the quantitative results are not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,000$^{\circ}C$and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow 600$^{\circ}C$ however, there is some difference up to 600$^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 800$^{\circ}C$. The reason is the phase transformation of STS430 probably begins at 800$^{\circ}C$.

  • PDF

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보점용접부의 면외 변위측정)

  • 백태현;김명수;차병석;조성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.226-230
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The spekle patterns to be formed with interference phenomena of scattering phenomena measure the out-of-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and the display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-0of-plane displacements of a spot welded canti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

  • PDF

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Measurement of Thermal Coefficient at High Temperature by CW-Laser Speckle Photography and Image Processing (고온하의 CW 레이져 스페클 사진법과 화상처리에 의한 열팽창계수 측정에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-99
    • /
    • 1992
  • In resent year Laser Speckle and its development have enabled surface deformation of engineering components and materials to be interferometrically examined. Laser Speckle- Pettern Interferometry Method is a very useful method for measuring In-plane components of displacement. In measuring thermal expansion coefficient, the various problems generated were established, and the measuring limitation examined. Metarial INCONEL 601 was used in experiments. Specimen was heated to the high temperature(100$0^{\circ}C$) by diong current to the direct two specimen. Then, those problems appear to the influence of back-ground radiation by the heated specimen, the influence by air turbulence, the oxidation of specimen. The color monitor and interference filter prevented the back-ground radiation by rad heat. The oxidation occuring in specimen itself was not generated by the being acid-proof excellence of material INCONEL 601. Yet, in this experiments, the serious problems are the oxidation of specimen and influence by air turbulence. By more reserching these problems forward, it is helpful that the thermal expansion coefficient of many materials is directly measured under high temperature.

  • PDF

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.

GPU-ACCELERATED SPECKLE MASKING RECONSTRUCTION ALGORITHM FOR HIGH-RESOLUTION SOLAR IMAGES

  • Zheng, Yanfang;Li, Xuebao;Tian, Huifeng;Zhang, Qiliang;Su, Chong;Shi, Lingyi;Zhou, Ta
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • The near real-time speckle masking reconstruction technique has been developed to accelerate the processing of solar images to achieve high resolutions for ground-based solar telescopes. However, the reconstruction of solar subimages in such a speckle reconstruction is very time-consuming. We design and implement a new parallel speckle masking reconstruction algorithm based on the Compute Unified Device Architecture (CUDA) on General Purpose Graphics Processing Units (GPGPU). Tests are performed to validate the correctness of our program on NVIDIA GPGPU. Details of several parallel reconstruction steps are presented, and the parallel implementation between various modules shows a significant speed increase compared to the previous serial implementations. In addition, we present a comparison of runtimes across serial programs, the OpenMP-based method, and the new parallel method. The new parallel method shows a clear advantage for large scale data processing, and a speedup of around 9 to 10 is achieved in reconstructing one solar subimage of $256{\times}256pixels$. The speedup performance of the new parallel method exceeds that of OpenMP-based method overall. We conclude that the new parallel method would be of value, and contribute to real-time reconstruction of an entire solar image.

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보 점용접부의 면외 변위측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Na, Eui-Gyun;Koh, Seung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.66-72
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The speckle patterns to be formed with interference and scattering phenomena can measure not only out-of-plane but also in-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and to display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-of-plane displacements of a spot welded cacti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded cacti-levered plate is quite different from that of the canti-levered plate without spot welding.

Development of Signal Processing Technique of Digital Speckle Tomography for Analysis of Three-Dimensional Density Distributions of Unsteady and Asymmetric Gas Flow (비정상 비대칭 기체 유동의 3차원 밀도 분포 분석을 위한 디지털 스펙클 토모그래피 기법의 신호 처리 기술 개발)

  • Baek, Seung-Hwan;Kim, Yong-Jae;Ko, Han-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2006
  • Transient and asymmetric density distributions of butane flow have been investigated from laser image signals by developed three-dimensional digital speckle tomography. Moved signals of speckles have been captured by multiple CCD images in three angles of view simultaneously because the flows were asymmetric and transient. The signals of speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays fur density gradients. The three-dimensional density fields have been reconstructed from the fringe shift signal which is integrated from the deflection angle by a real-time multiplicative algebraic reconstruction technique (MART).

Performance Criterion of Bispectral Speckle Imaging Technique (북스펙트럼 스펙클 영상법의 성능기준)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1993
  • In the case of an imaging system affected by aberrations which are not precisely known, the effect of aberrations can be minimized and near-diffraction-limited images can be restored by introducing artificial random phase fluctuations in the exit pupil of the imaging system and using bispectral speckle imaging. In order to determine the optimum value of the correlation length for Gaussian random phase model, computer simulation is performed for 50 image frames of a point object in the presence of defocus, spherical aberration, coma, astigmatism of 1 wave, respectively. In terms of the criterion of performance, the FWHM of the point spread function, normalized peak intensity, MTF and visual inspection of the restored object are employed. The optimum value for the rms difference $\sigma$ of aberration on the exit pupil in the interval of Fried parameter ${\Upsilon}_0$ is given by 0.27-0.53 wave for spherical aberration, and 0.24-0.36 wave for defocus and astigmatism, respectively. It is found that the bispectral speckle imaging technique does not give good results in the case of coma.

  • PDF