Abstract
The near real-time speckle masking reconstruction technique has been developed to accelerate the processing of solar images to achieve high resolutions for ground-based solar telescopes. However, the reconstruction of solar subimages in such a speckle reconstruction is very time-consuming. We design and implement a new parallel speckle masking reconstruction algorithm based on the Compute Unified Device Architecture (CUDA) on General Purpose Graphics Processing Units (GPGPU). Tests are performed to validate the correctness of our program on NVIDIA GPGPU. Details of several parallel reconstruction steps are presented, and the parallel implementation between various modules shows a significant speed increase compared to the previous serial implementations. In addition, we present a comparison of runtimes across serial programs, the OpenMP-based method, and the new parallel method. The new parallel method shows a clear advantage for large scale data processing, and a speedup of around 9 to 10 is achieved in reconstructing one solar subimage of $256{\times}256pixels$. The speedup performance of the new parallel method exceeds that of OpenMP-based method overall. We conclude that the new parallel method would be of value, and contribute to real-time reconstruction of an entire solar image.