• Title/Summary/Keyword: speckle error

Search Result 37, Processing Time 0.021 seconds

A Study on the Thermal Coefficient Measurements of Special Steel by ESPI at High Temperature (고온에서 ESPI에 의한 특수강의 열팽창계수 측정에 관한 연구)

  • Kim, K.S.;Yang, S.P.;Kim, H.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.20-30
    • /
    • 1993
  • Electric Speckle Pattern Interferometry (ESPI) using a CW-laser, a video system and an image processor was applied to the thermal coefficient measurements on free thermal expansions at high temperatures : ESPI provides the distribution of in-plane displacement resolved in a preselected direction. ESPI retains the merits of little or no surface preparation, no contact with the surface and the real-time presentation of interference fringes. Appling ESPI at high temperatures, several problem which caused the reduction of fringe visibility were encountered. The problem on the turbulence in the hot air surrounding high temperature objects will be solved by using a vacuum chamber. The background radiations from the objects were suppressed considerably by an interference filter. The problem on the oxidation of the object surface could't be solved. The interference fringe, whose spacings were calculated by FFT to avoid human error, were observable up to $800^{\circ}C$. The results measured by ESPI were nearly equal to the data which have already been published, up to about $800^{\circ}C$.

  • PDF

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Comparison of Composite Methods of Satellite Chlorophyll-a Concentration Data in the East Sea

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Min-Sun;Kang, Chang-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.635-651
    • /
    • 2012
  • To produce a level-3 monthly composite image from daily level-2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a concentration data set in the East Sea, we applied four average methods such as the simple average method, the geometric mean method, the maximum likelihood average method, and the weighted averaging method. Prior to performing each averaging method, we classified all pixels into normal pixels and abnormal speckles with anomalously high chlorophyll-a concentrations to eliminate speckles from the following procedure for composite methods. As a result, all composite maps did not contain the erratic effect of speckles. The geometric mean method tended to underestimate chlorophyll-a concentration values all the time as compared with other methods. The weighted averaging method was quite similar to the simple average method, however, it had a tendency to be overestimated at high-value range of chlorophyll-a concentration. Maximum likelihood method was almost similar to the simple average method by demonstrating small variance and high correlation (r=0.9962) of the differences between the two. However, it still had the disadvantage that it was very sensitive in the presence of speckles within a bin. The geometric mean was most significantly deviated from the remaining methods regardless of the magnitude of chlorophyll-a concentration values. Its bias error tended to be large when the standard deviation within a bin increased with less uniformity. It was more biased when data uniformity became small. All the methods exhibited large errors as chlorophyll-a concentration values dominantly scatter in terms of time and space. This study emphasizes the importance of the speckle removal process and proper selection of average methods to reduce composite errors for diverse scientific applications of satellite-derived chlorophyll-a concentration data.

Phase-Shifting System Using Zero-Crossing Detection for use in Fiber-Optic ESPI (영점검출을 이용한 광섬유형 전자 스페클 패턴 간섭계의 위상이동)

  • Park, Hyoung-Jun;Song, Min-Ho;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.516-520
    • /
    • 2005
  • We proposed an efficient phase stepping method for the use in fiber-optic ESPI. To improve phase-stepping accuracy and efficiency, a fiber-optic Michelson interferometer was phase-modulated by a ramp-driven fiber stretcher, resulting in 4$\pi$ phase excursion in the PD interference signal. The zero-crossing points of the signal, which have consecutive $\pi$ phase difference, were carefully detected and used to generate trigger signals for the CCD camera. From the experimental results by using this algorithm, $\pi$/2 phase-stepping errors between the speckle patterns were measured to be less than 0.6 mrad with 100 Hz image capture speed. Also it has been shown that the error from the nonlinear phase modulation and environmental perturbations could be minimized without any feedback algorithm.

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences (초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출)

  • Kim, Baek-Sop;Shin, Seong-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.402-410
    • /
    • 2006
  • This paper presents a method for feature based block motion estimation that uses multi -resolution image sequences to obtain the panoramic images in the continuous ultrasound image sequences. In the conventional block motion estimation method, the centers of motion estimation blocks are set at the predetermined and equally spaced locations. This requires the large blocks to include at least one feature, which inevitably requires long estimation time. In this paper, we propose an adaptive method which locates the center of the motion estimation blocks at the feature points. This make it possible to reduce the block size while keeping the motion estimation accuracy The Harris-Stephen corner detector is used to get the feature points. The comer points tend to group together, which cause the error in the global motion estimation. In order to distribute the feature points as evenly as Possible, the image is firstly divided into regular subregions, and a strongest corner point is selected as a feature in each subregion. The ultrasound Images contain speckle patterns and noise. In order to reduce the noise artifact and reduce the computational time, the proposed method use the multi-resolution image sequences. The first algorithm estimates the motion in the smoothed low resolution image, and the estimated motion is prolongated to the next higher resolution image. By this way the size of search region can be reduced in the higher resolution image. Experiments were performed on three types of ultrasound image sequences. These were shown that the proposed method reduces both the computational time (from 77ms to 44ms) and the displaced frame difference (from 66.02 to 58.08).

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.