• Title/Summary/Keyword: specimen size

Search Result 1,378, Processing Time 0.025 seconds

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

The Effect of Fiber Length and Specimen Size on Spalling and Temperature Distribution in High Strength Concrete Specimen (고강도 콘크리트 부재에서 섬유 길이와 부재 크기가 폭렬 특성 및 온도 분포에 미치는 영향)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Sohn, Yu-Shin;Kim, Han-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.17-20
    • /
    • 2006
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of fiber length and specimen size on the spalling and temperature distribution in high strength concrete specimen was experimentally investigated. Three HSC specimens measuring $305{\times}305mm$, $500{\times}500mm$ and $700{\times}700mm$ with the fiber were prepared. The fiber length was 6mm and 10mm. As a result, it appears that when the remaining ratios(by weight) of fibre at $300^{\circ}C$ and $350^{\circ}C$ are less than 80% and 50%, respectively, the spalling of high strength concrete is prevented.

  • PDF

Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete (콘크리트의 압축강도에 공시체의 크기와 형상이 미치는 영향)

  • 최중철;양은익;이성태;김명유;이광교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.285-288
    • /
    • 2003
  • The compressive strength of concrete is used as the most fundamental and important material property when reinforced concrete structures are designed. It has been problem to use this value, however, because the control specimen sizes and shapes are different from every country. In this study, the effect of specimen shapes and sizes on compressive strength of concrete members was experimentally investigated based on fracture mechanics. Experiments for the mode I failure was earned out by using cylinder, cube, and prism specimens. The test results are curve fitted using least square method(LSM) to obtain the new parameters for the modified size effect law(MSEL). The analysis results show that the effect of specimen sizes and shapes on ultimate strength is apparent. The results also show stronger size effect in member when the casting direction is perpendicular to loading direction

  • PDF

Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31 (AZ31 마그네슘합금 시편의 두께가 피로균열진전거동의 확률분포에 미치는 영향)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2009
  • As the variables affecting the fatigue behavior have uncertainty, the fatigue crack propagation is stochastic in nature. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy under the different thicknesses of specimen. The effects of specimen thickness on the probability distribution of the fatigue crack propagation life and the crack size are estimated experimentally. The probability distribution of the crack size and the fatigue life for different specimen thicknesses are investigated by Anderson-Darling test and the best fit for those probability distributions are also presented.

  • PDF

An Experimental Study on Thermal Resistance of Large-scale Specimen Using KS F 2278 (KS F 2278을 적용한 대면적 시료 열관류율 시험 실측에 관한 연구)

  • Moon, Jae-Sik;Lee, Won-Gyun;Kim, Young-Bong;Cho, Byoung Young;No, Sang-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.306-307
    • /
    • 2018
  • In Korea, The thermal resistance test of window sets is performed according to KS F 2278 standard, and is performed only on a specimen size of 2000 × 2000 (mm). In this study, a standard panel measuring 4000 × 3000 (mm) size was used to measure the heat flux in each part of the specimen, and to calculate the resistance to heat transfer And to seize whether the KS F 2278 standard is applicable to large Specimen.

  • PDF

A Study On the Factors that Affect Fatigue Crack Growth Rate in Steels - Specimen Thickness Effect - (강재의 피로균열전파율에 미치는 영향인자에 관한 연구)

  • Kim, Seon-Jin;Nam, Ki-Woo;Hong, Jin-Pyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.58-65
    • /
    • 1999
  • The effect of specimen thickness on fatigue crack growth rate was studied. The objective of the present study is to investigate the effect of specimen thickness on the fatigue crack growth behavior at various stress intensity factor ranges and also the variation of material restance to fatigue crack growth. The fatigue crack growth resistance was treated as a spatial stochastic process, which varies randomly on the crack path, Compact tension specimens with a LT orientation for structural steel were used. All testing was done at a constant stress intensity level. The experimental data were analyzed for the size effect to determine the Weibull distributions of the material resistance.

  • PDF

Transition Temperature Evaluation of 1Cr-1Mo-0.25V Steel Using Miniaturized Charpy Impact Specimen (소형 샤르피 충격시험편을 이용한 1Cr-1Mo-0.25V강의 천이온도 평가)

  • Nahm Seung Hoon;Kim Si Cheon;Lee Hae Moo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.42-46
    • /
    • 1998
  • Miniaturized specimen technology Permits mechanical behavior to be determined using a minimum volume of material. The technology is useful in case of not collecting a large amount of materials from industrial equipments. Five kinds of accelerated degradation materials were prepared by isothermal aging heat treatment at $630^{\circ}C$. Three kinds of specimens were prepared for impact testing. In order to increase plastic constraint of subsize specimen, side-groove was introduced. Results between subsize and full size impact testing were compared. Size effects correlations were developed for the impact properties of turbine rotor material. These correlations successfully predict the ductile brittle transition temperature (DBTT) of full size Charpy impact specimens based on subsize specimen data.

  • PDF

Effects of Compaction Pressure on the Properties of the Microstructure and Oxygen Gas Sensing of $Co_{1-x}Mg_xO$ Ceramics (성형압력이 $Co_{1-x}Mg_xO$ 세라믹스의 미세구조와 산소가스감지특성에 미치는 영향)

  • 전춘배;이덕동;조상희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1691-1698
    • /
    • 1989
  • Gas sensing effects produced by adsorptive reaction between specimen surface and gases are expected to be influenced greatly by the state of the speimen surface. In this study, Co1-xMgxO ceramics oxygen sensors were prepared by pressing at 0.3-1.5ton/cm\ulcornerwith or without binder, intending to change porosity and average grain size on the surface purposely. The composition ratio of CoO to MgO was fixed at 1:1(mol.%). Microstructure of prepared Co0.5Mg0.5O ceramics were observed, the electrical properties and the sensitivity characteristics for oxygen gas were investigated in the device temperature range of 700-1000\ulcorner and for oxygen partical pressure range of 1-10**-4 atm. Temperature dependence of the resistivity of the specimen showed NTC behavior, average grain size increased and porosity decreased with increasing compaction pressure. The slope of the resistivity of the specimen on the oxygen partial pressure decreased with increasing average grain size and with decreasing porosity. Particularly, specimen pressed by 0.3 and 0.5 ton/cm\ulcornershowed the highest sensitivity to oxygen gas.

  • PDF

Analysis of airborne sound insulation performance by the experiment using small size specimen (축소시편 실험을 통한 공기전달음 차단성능 분석)

  • Kim, Hang;Park, Hyeon Ku;Goo, Hee Mo;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The residents' demand for the comfortable life is promoting development of wall and window which has high sound insulation performance. To develop wall system, various aspects should be considered on the environment, material, construction and structure. Especially focusing on the acoustical view, the economical solution is one of the most critical point. Recently the interest on the partition wall is being increased, because it is useful for the Rahmen type apartment which is considered as an alternative to reduce floor impact sound. This study examines simplified measurement method of airborne sound insulation applied small size specimen, in order to save money to be used for the standard specimen then to promote the development process. The results showed that the simplified method could be effective for the wall system the sound insulation performance upto Rw 50 dB, and for the judgement of rank order of sound insulation performance of the similar wall type while developing.

Size Effect on Axial Compressive Strength of Notched Concrete Specimens

  • Yi, Seong-Tae;Kim, Jin-Keun
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • In this study, size effect tests were conducted on axial compressive strength of concrete members. An experiment of Mode I failure, which is one of two representative compressive failure modes, was carried out by using dimensionally proportional cylindrical specimens (CS). An adequate notch length was taken from the experimental results obtained from the compressive strength experiment of various initial notch lengths. Utilizing the notch length, specimen sizes were then varied. In addition, new parameters for the modified size effect law (MSEL) were suggested using Levenberg-Marquardt's least square method (LSM). The test results show that size effect was apparent for axial compressive strength of cracked specimens. Namely, the effect of initial notch length on axial compressive strength size effect was apparent.

  • PDF