• Title/Summary/Keyword: specimen height

Search Result 275, Processing Time 0.027 seconds

Effects of loading frequency and specimen size on the liquefaction resistance of clean sand

  • Sung-Sik Park;Dong-Eun Lee;Dong-Kiem-Lam Tran
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • This study investigates the effects of loading frequency (f) and specimen size on the liquefaction resistance of clean sand. A series of cyclic direct simple shear tests were conducted on Jumunjin sand with varying consolidated relative densities (40% and 80%), f values (0.05, 0.10, and 0.20 Hz), and diameter to height (D/H) ratios (3.63, 3.18, 2.82, and 2.54). The results demonstrated the significant influence of f and D/H ratio on the number of cycles to liquefaction (Ncyc-liq) and the cyclic resistance ratio (CRR15). It was observed that increasing f linearly increased Ncyc-liq. Increasing the specimen height also led to higher Ncyc-liq values irrespective of the f or relative density. Moreover, a positive correlation between CRR15 and f indicated that higher f yielded higher CRR15. This relationship was more pronounced in dense sand than in loose sand. Specimen height also significantly affected CRR15, with increasing the specimen height resulting in higher CRR15 values. Furthermore, the effect of f on CRR15 was less significant compared to the influence of specimen height. The effect of f on the normalized cyclic resistance ratio (NCRR) was relatively negligible for loose sand but more substantial for dense sand depending on the D/H ratio. Data analysis revealed that the NCRR generally decreases as the D/H ratio increases. An interpolation formula was provided to calculate the NCRR based on the D/H ratio regardless of the f and relative density.

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion (컵-컵형 축대칭 복합압출에 관한 실험적연구)

  • 김영득;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

A plane strain punch stretching test for evaluating stamping formability (평면변형장출실험을 이용한 스탬핑 성형성 평가)

  • 김영석;남재복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.121-129
    • /
    • 1993
  • Plane strain punch stretching test (PSST) was developed to evaluate stamping formability of sheet materials. In this test, the rectangular specimen of sheet material is uniformly stretched up to fracture by raising a specially designed punch to certainly assure plane strain stretching deformation along the longitudinal direction of the specimen. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test compared to limit dome height(LDH) in hemispherical punch stretching test. LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance. Moreover by using ultrasonic thickness gauge the plane strain intercept-limit plane strain(FLCo)-in forming limit curve can be accurately determined from thickness measurement around the fracture area. The FLCo derived from thickness measurement well correlates with the results from circle grid analysis for the deformed circle grid marked on the surface of the specimen.

  • PDF

A Study on the Influencing Factors on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 실험인자의 영향에 관한 연구)

  • 한민철;김기정;백병훈;한천구;송성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.361-364
    • /
    • 2002
  • This paper discusses the influencing factors such as coring position, height to diameter ratio of core specimen(h/d) and coring torque on the strength estimation of concrete by small site coring method in order to verify the validities of small size core method. According to results, as for the influence of drilling position, when core specimens are obtained from the place parallel to placing direction, compressive strength of core specimens are higher than those perpendicular to placing direction. This is due to the loss of the area of core specimen perpendicular to plating direction by bleeding. And in case of $\phi$ 24mm core specimen, when vertical drilling against placing direction is taken. compressive strength of core specimen obtained at the bottom of the structure is higher than that at the top of the structure. As for the influence of height to depth ratio, as h/d ratio increases compressive strength shows to be decreased. As for the influences of rotation speed of drilling machine, as its speed goes up, compressive strength decreases, regardless of core diameter.

  • PDF

A curtain traveling pluviator to reconstitute large scale sand specimens

  • Kazemi, Majid;Bolouri, Jafar B.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • The preparation of repeatable and uniformly reconstituted soil specimens up to the specified conditions is an essential requirement for the laboratory tests. In this study for large samples replication, the simultaneous usage of the traveling pluviation and curtain raining technique is used to develop a new method, called the curtain travelling pluviator (CTP). This simple and cost effective system is based on the air pluviation approach, whilst reducing the sample production time, can reproduce uniform samples with relative densities ranging from 25% to 96%. In order to investigate the resulting suitability and uniformity from the proposed method, a series of tests is performed. The effect of curtain traveling velocity, curtain width, drop height, and flow rate on the parameters of the sample is thoroughly investigated. Increase in the curtain velocity and drop height leads to the increase in relative density for the sand specimen. Increase in curtain width typically resulted in the reduction of relative density. Test results reveal that the terminal drop height for the sand specimen in this study is more than 500 mm. Relative density contour lines are presented that can be utilized in optimizing the drop height and curtain width parameters. Sample uniformity in the vertical and horizontal orientation is investigated through the sampling containers. Increasing relative density tends to result in the higher sample repeatability and uniformity.

A STUDY ON THE CURING EFFECT OF COMPOSITE RESIN BY VISIBLE LIGHT THROUGH TOOTH SUBSTANCE (가시광선(可視光線)의 치질투과(齒質透過) 후(後) 복합(複合)레진 경도(硬度)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Bang, Sang-Hoon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 1986
  • The purpose of this study was to investigate the curing effect of visible light through tooth substance, 0.5mm, 1.0mm thickness of enamel and dentin were prepared. Experimental specimen were made by Bisfil M & Silux packing into cylindrical brass mold 6.0mm in diameter, 2.0mm and 3.0mm, in height. All specimen were irradiated by visible light (Grip type) model No. SDL-50 Shofu Co.) for 30 seconds through tooth substance. Experimental groups were classified into enamel group (group 1) and dentin group (group 2) according to the thickness of tooth materials and then were divided into 2 subgroups (0.5mm group and 1.0mm group). In experimental groups, visible light irradiated to the specimen through either 0.5mm in thick or 1.0mm in think of tooth material. In Control group specimen were prepared by direct irradiation on the specimen surface of visible light without through tooth substance. The hardness was measured with a Barcol hardness tester (Barber-Colman Co. U.S.A.) for each prepared specimen. The results were as follows: 1. In control group, there were higher hardness values than those of in experimental group. 2. In experimental groups, 0.5mm groups had higher hardness values than 1.0mm groups did. 3. The hardness value at top surface of the specimen were higher than the hardness of bottom surface in each group. 4. Bisfil M had higher hardness values than Silux. 5. In all specimen of 3.0mm height polymerization effect was not occurred at bottom surface except Bisfil M in control group.

  • PDF

Experimental Study on the Effect of Specimen Size on Electrical Resistivity Measurement (전기비저항 측정에서 실험체 크기의 영향에 대한 실험적 연구)

  • Lim, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, the effect of the size of the specimen on the apparent resistivity was investigated at the laboratory level for electrical resistivity. The specimens were measured for apparent resistivity by fabricating specimens with different sides and heights. Experimental results show that the apparent resistivity increases as the side and height of the specimen become smaller. Also, it was confirmed that the influence of the size of the specimen on the electrical resistivity measurement was not linear.

Estimation of Flaw Depth and Height by Radiography (방사선투과사진에 의한 결함깊이 및 높이의 평가)

  • Kang, Kae-Myung;Park, Un-Su;Sim, Eon-Deok
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.682-687
    • /
    • 2002
  • The three-dimensional estimation on the depth and height of flaw by using the difference of radiographic contrast density was studied. First, the specimens having artificial flaws of various depths and heights were prepared and the radiographic testing was performed. The radiographic depth of flaw was investigated and estimated on the effect of the scattered radiation with the change of distance between flaw and film. The height of flaw was estimated from the radiographic test with the reference specimen. The radiographic contrast with flaw depth decreased with increasing the flaw depth. The scattered radiation increased with increasing flaw depth and varied with the location between flaw and film. However, in the case of flaw height, the contrast density increased with increasing flaw height. It is thought due to the change in volume generating the scattered radiation which reaches a film.

A Study on Double - Punch Test for Tensile Strength of Concrete (Double-Punch Test에 의한 콘크리트의 인장강도 시험에 관한 연구)

  • 이우종;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.82-94
    • /
    • 1988
  • The purpose of this study is to introduce the Double Punch test method which is an indirect testing method of tensile strength of concrete, and to compare with the tensile strength of concrete as determined by the split-cylinder test, a practical method for performing the Double Punch test to obtain the tensile strength of concrete is proposed and recommended for general use. In this study, the dimensions of cylindrical specimens used in the Double-Punch test were 15X30cm, 15X15cm, 10${\times}$(20cm, and 5${\times}$l0cm, and in the split-cylinder test were 15${\times}$(30cm, 15${\times}$(15cm, and 10${\times}$(20cm. And the diameters of loading punches used in the Double-Punch test were 1.5cm, 2.5cm, and 3.5 cm. The results obtained from tests are summarized as follows ; 1. In the split-cylinder test, the tensile strength of concrete by the linear elasticity theory is similar to that of plasticity theory. 2. Both split-cylinder test and Double-Punch test, tensile strength of concrete is increased with decreasing specimen size. This tendency is identical when the ratio of specimen diameter to height is 1: 2, but that tendency is quite different when the ratio is 1: 3. In the Double-Punch test, if specimen size is constant, by increasing the punch size, tensile strength of concrete is increased, too. 4. Using a 15 ${\times}$( 15 cm cylinder specimen and 3.5 cm diameter punch in the Double Punch test would give the most uniform and consistent result in tensile strength, and the result showed a gQod correlation with splitting tensile strength from 15 x 30cm specimen. 5. In order to obtain satisfactory results and to nuninuze variability, it is proposed that specimens of 15 cm in diameter and 15 cm in height with two 3.5 cm diameter punches should be used. It seems, therefore, reasonable tt) take f't=0.0024 P(kg / cm$^2$) as a working formula for computing the tensile strength in the Double Punch test for concrete.

  • PDF