• 제목/요약/키워드: specimen geometry

검색결과 155건 처리시간 0.025초

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

SM 50A 강으로 제작된 T-형 용접형상의 용접후처리 방법이 피로수명 증가에 작용하는 역할 (Role of Post Weld Treatment Methods in the Improvement of Fatigue Life for T-type Welded Structures Made by SM 50A Steel)

  • 한창완;이재훈;송준혁;이현우;박성훈
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.307-312
    • /
    • 2012
  • This study aims to investigate the effect of the post weld treatments on the fatigue life of T-type welded structure made by a SM50A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. T-type test specimens were prepared by the CO2 welding of rolled steel plates (SM50A steel) with a thickness of 10 mm at a welding speed of 30 cm/min and these Ttype welded specimens were further treated by UIT (Ultrasonic Impact Treatment) and/or toegrinding post welding treatment methods. In order to investigate improvements on the fatigue life of the samples. 3-point bending fatigue tests were conducted with a stress ratio of R=0.1 under a cyclic loading environment at a frequency of 5 Hz, via a hydraulic fatigue testing machine (${\pm}100\;kN$, MTS 809). The tests were performed at room temperature. The fatigue life of UIT specimens was approximately 25 times longer than that of as-welded specimens at a stress amplitude of 281 MPa, while toe-grinding specimens exhibited 4.15 times longer fatigue life. The current results could provide important guidelines to determine the proper post weld treatment methodologies of T-type welded parts for excavators with a satisfactory fatigue life although under severe operating conditions.

ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화 (Effect of plasma oxidation time on TMR devices prepared by a ICP sputter)

  • 이영민;송오성
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.900-906
    • /
    • 2001
  • We prepared tunnel magnetoresistance(TMR) devices of Ta($50\AA$)/NiFe($50\AA$)/IrMn(150$\AA$)/CoFe($50\AA$)/Al ($13\AA$)-O/CoFe($40\AA$)/NiFe($400\AA$)/Ta(50$\AA$) structure which has 100$\times$100 $\mu\textrm{m}^2$ junction area on $2.5\Times2.5 cm^{2}$ $Si/SiO_2$ ($1000\AA$) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 $\Omega$ to 1018 $\Omega$ while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k$\Omega$$\mu\textrm{m}^2$ which is appropriate for industrial needs of magnetic random access memory(MRAM) application.

  • PDF

황(黃)라왕재(Shorea spp.)의 모드 I, 모드 II 및 혼합(混合)모드 하중시(荷重時) 파괴기준(破壞基準)에 관(關)한 연구(硏究) (Studies on Fracture Criterion in Yellow Lauan(Shorea spp.) under Mode I, Mode II and Mixed Mode Loading)

  • 심국보;이전제;정희석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.61-72
    • /
    • 1992
  • This study was carried out to investigate the fracture behavior and the fracture criterion of yellow lauan(Shorea spp.), when has used for furniture and wood structures, and to offer a reliability for wood structure and basic data for wood fracture criterion in experiments which are fracture tested under mode I, mode II and mixed mode loading condition. The results were summarized as follows; 1. Fractures in specimens which have inclined grain in yellow lauan procedeed from crack tip in the radial direction along the grain. 2. In yellow lauan, $K_{IC}RL$ was 42.1kg/$cm^{3/2}$ and $K_{IIC}RL$ was 15.8kg/$cm^{3/2}$. 3. The fracture criteria of lauan were; ($K_I/K_{IC}$)+($K_{II}/K_{IIC}$)=1 in RL system with inclined grain at $45^{\circ}$, ($K_I/K_{IC}$)+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $15^{\circ}$ and $(K_I/K_{IC})^2$+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$, respectively. 4. The fracture criterion of wood could vary with the species, and the load applying condition. In order to measure the fracture criterion strictly, along with standardization of specimen geometry a large amount of experimental data is needed. 5. $K_{IC}$(critical stress intensity factor) can be predicted by grain angle. As the grain inclined angle increased, $K_{IC}$ and $K_{IIC}$ are increased.

  • PDF

밥블록을 이용한 찰밥의 경도 및 부착성 측정법 (Measurement of Hardness and Adhesiveness of Cooked-Rice)

  • 이영진;황선옥;박윤서;윤운중;전재근
    • Applied Biological Chemistry
    • /
    • 제38권5호
    • /
    • pp.398-402
    • /
    • 1995
  • 전기밥솥으로 지은 일반계(Japonica) 쌀밥의 경도와 부착성을 texturemeter를 사용하여 낱알과 밥블록상태에서 측정하였다. 밥알 3, 4, 5개씩을 균등하게 배열하고 95%의 압축비에서 plastic plunger 로 측정한 경우 각각 경도는 7.4, 7.5, 10.0kg이었으며 변이계수가 25.9%에 이르렀다. 원통형 밥블록(15mm diameter, 20mm height)으로 성형한 것을 80% 압축비로 측정한 결과, 경도는 2.1kg이었고 변이계수는 $2.8{\sim}7.0%$의 수준으로 현격히 감소되었다. 밥블록측정법이 정확도와 재현성에서 낱알측정법보다 월등히 좋았으며 밥블록의 성형방법과 측정 방법을 개발하였다. 밥의 부착성은 낱알측정법으로는 불가능하였고, 밥블록을 톱니형의 plunger와 platform을 사용할 경우 가능하였으며 그 값은 0.68kg sec이었고 변이계수는 4.6%이었다.

  • PDF

CAD 프로그램을 활용한 트리코트 텍스타일 디자인 개발 프로세스 연구 (A Study on Tricot Textile Design Process using Tricot CAD Program)

  • 최경미;김종준
    • 패션비즈니스
    • /
    • 제19권5호
    • /
    • pp.1-16
    • /
    • 2015
  • The appearances and geometry structures of knitted fabrics have important effects on their functions as textile fabrics. Structural design of the woven fabric, prior to the manufacturing processes in the weaving mill, often leads to a similar predictable appearance in the final outcome with the corresponding weave design. The increase of the employment of elastic textile yarns in knitting fabrics for comfort stretch or outdoor sports wear knit products has, however, resulted in difficulties in predicting the final appearance of the knit structure design. Due to the stretchability and exceptional recovery behavior of the elastic yarns such as polyurethane elastomeric yarns, the appearance of the final product often differs from the initial knit design. At textile CAD program for preparing tricot knit designs has been employed in this study to predict the two dimensional appearance of the design. The similarities between the designs and corresponding knit products seem to be acceptable for the two-dimensional textile CAD program in this study. However, when elastomeric yarns are partially employed in the polyester filament tricot product, a considerable amount of departure from the design is apparent due to the constriction and/or deformation of property differences in the elastomeric yarns and polyester filament yarns. Therefore, another purpose of this study is to measure the departure of the final tricot product from the initial tricot design, especially in the case employing elastomeric yarns in the knit structure together with regular polyester filament yarns. For measuring the three-dimensional departure, a 3D scanning system has been used for the mesh reconstruction of the fabric specimen. Hopefully, the result from this study will be used as a guide to modify and improve the current textile CAD program proposed for the two-dimensional simulation of the tricot.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.