• Title/Summary/Keyword: specimen depth

Search Result 543, Processing Time 0.023 seconds

A Study on the fatigue Strength of SACM 645 Steel under Various Nitriding Methods and Times (질화처리 방법 및 시간에 따른 SACM 645강의 피로 강도 변화에 대한 연구)

  • 원성준;임병수;하재용;남기석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.216-221
    • /
    • 2001
  • In this study, the effects of nitriding methods and times on the fatigue strength of SACM 645 steel were investigated. The rotary bending tests were carried out to obtain and compare the fatigue strengths of plasma ion nitrided specimens and gas nitride specimen. The 70 hr. gas nitrided specimen had the highest fatigue strength of 1.05$\times$$10^3$ MPa over the 40 hr., 70 hr. and 90 hr. plasma ion nitrided specimens, which had the fatigue strength of 3.48$\times$$10^2$, 4.57$\times$$10^2$ and 4.64$\times$$10^2$ respectively. Also, the microhardness tests were conducted to measure the effective case depths. The plasma ion nitrided specimens showed much higher surface hardness values than the gas nitrided specimen overall.

  • PDF

On geometry dependent R-curve from size effect law for concrete-like quasibrittle materials

  • Zhao, Yan-Hua;Chang, Jian-Mei;Gao, Hong-Bo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.673-686
    • /
    • 2015
  • R-curve based on the size effect law previously developed for geometrically similar specimens (geometry type III) is extended to geometries with variable depth (geometry type I) as well as with variable notch (geometry type II), where the R-curve is defined as the envelope of the family of critical strain energy release rates from specimens of different sizes. The results show that the extended R-curve for type I tends to be the same for different specimen configurations, while it is greatly dependent on specimen geometry in terms of the initial crack length. Furthermore, the predicted load-deflection responses from the suggested R-curve are found to agree well with the testing results on concrete and rock materials. Besides, maximum loads for type II specimen are predicted well from the extended R-curve.

Application of Kinetic Indentation Technique to Estimate Wear and Fatigue Behaviors of Irradiated Small Specimens (조사된 미소 시편의 마모와 피로 거동을 평가하기 위한 동적 압침법)

  • V. Alyokhin;Y.S. Pyun;C.H. Hahn;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.38-38
    • /
    • 2002
  • Kinetic indentation technique was studied and a method to evaluate wear and fatigue behaviors of irradiated small specimen was suggested. The method is based on both the proportion of elastic and plastic deformation and values obtained by micro-hardness test. The parameters obtained from the diagram of load-indentation depth-time are required to evaluates wear and fatigue properties. Considering the irradiated test specimen, it is one of possible and useful methods to estimate the irradiated wear and fatigue behaviors of the small size specimen. This article briefly describes the status of irradiated material study in domestic research reactor.

  • PDF

Fluid Transport Properties of Skin Concrete and New Suggestion to Determine Minimum Cover Concrete (콘크리트 표면의 유체이동특성과 최소피복두께 결정을 위한 제안)

  • 이창수;윤인석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.543-546
    • /
    • 2002
  • This paper discussed micro - structure of skin concrete to understand transport properties from surface and seek thickness from surface which is seriously influenced on durability. Concrete at nearer surface has high porosity relative to inner concrete. The porosity of concrete and ISAT value at region from surface to 20 mm depth is decreased with depth. On the other hand, according to the result of ASTM C 1202 with specimen thickness, critical depth which affects fast ionic penetration through interfacial transition zone (ITZ) equals 35mm and the critical depth would be directly influenced by the effects of ITZ on chloride diffusion unrelated with W/C ratio.

  • PDF

Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution

  • Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2020
  • Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.

Concrete Shear Strength of HIRC Beams Reinforced with a SMA

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.75-82
    • /
    • 2018
  • The aim of the study is to evaluate the concrete shear strength and structural behavior of two general beams and eight shape memory alloys (SMAs)-reinforced beams under the flexural test. This work compares the existing reference formula for concrete shear strength with test result to provide the basic data for the design of highly intelligent reinforced concrete (hereinafter, HIRC) beams. The evaluation of the concrete shear strength was performed with effective depth (d=65, 70, 80), SMA diameter change (ø=2.0, 2.5) as the main variables of the specimens. For the relationship between the effective depth and the $V_{\exp}/V_{cal}$, the test result shows that the concrete shear strength gradually approaches 1.0 as the effective depth length increase. For the AIJ formula, the specimens are approached evenly for comparison between $V_{\exp}/V_{cal}$ and the by-product (garnet, fly-ash) reinforced specimen; however, other formulas indicate a deviation.

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Tests (볼 압입 시험의 기하학적 조건과 유동 응력 곡선의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by several investigators. In this study, load-depth curves from ball indentation tests were analyzed using the geometric conditions of the contact between ball and specimen. A series of numerical calculations and experimental results showed that the contact load-depth curves could be simplified by linear functions. Once we obtained the contact indentation depth from linearizing the experimental indentation curves, the estimation process of the flow properties became straight-forward and the scatter of results could be drastically reduced.

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

The Measurement of the Depth of Crack using Images of SLAM (SLAM 영상을 이용한 크랙 깊이 측정)

  • Hwang, Ki-Hwan;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 1997
  • In this paper, we studied the configuration and depth measurement method of the crack in the interior of solid with scanning laser acoustic microscope. Precision measurement method of crack depth is required in SLAM because that system reconstructs the shadow image to the transmission coefficient. We proposed this method that used geometrical structure to the shadow area of SLAM images obtained from oblique incidence and the mode conversion of ultrasound in specimen and then experimented it. For this experiment, we fabricated various specimens which had the vertical line-crack with different depth and made the wedge as 20$^{\circ}$ for oblique incidence. Experimental results showed that the shadow area of SLAM images were proportional to the depth of crack. Measured depth error to the crack was less than 6% compared with practical crack depth.

  • PDF

Experimental and numerical investigations on axial crushing of square cross-sections tube with vertical wave

  • Eyvazian, Arameh;Eltai, Elsadig;Musharavati, Farayi;Taghipoor, Hossein;Sebaey, T.A.;Talebizadehsardari, Pouyan
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • In this paper, wavy square absorbers were experimentally and numerically investigated. Numerical simulations were performed with LS-Dyna software on 36 wavy absorbers and their crushing properties were extracted and compared with the simple one. The effect of different parameters, including wave height, wave depth, and wave type; either internal or external on the crushing characteristics were also investigated. To experimentally create corrugation to validate the numerical results, a set of steel mandrel and matrix along with press machines were used. Since the initial specimens were brittle, they were subjected to heat treatment and annealing to gain the required ductility for forming with mandrel and matrix. The annealing of aluminum shells resulted in a 76%increase in ultimate strain and a 60% and 56% decrease in yield and ultimate stresses, respectively. The results showed that with increasing half-wave height in wavy square absorbers, the maximum force was first reduced and then increased. It was also found that in the specimen with constant diameter and half-wave depth, an increment in the half-wave height led to an initial increase in efficiency, followed by a decline. According to the conducted investigations, the lowe maximum force can be observed in the specimen with zero half-wave depth as compared to those having a depth of 1 cm.