• Title/Summary/Keyword: specimen condition

Search Result 1,169, Processing Time 0.027 seconds

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

A Study on the Change of the Corrosion Products by the Activity of Iron Reducing Bacteria for Corrosion Carbon Steel (부식철편에 있어서 철환원능력을 갖춘 세균의 활동에 의한 부식생성물의 변화)

  • Lee, So-Yeon;Matsui, Toshiya;Yoshikawa, Hideki
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.407-416
    • /
    • 2010
  • Bacteria with ability for iron reduction in the soil can use corrosion products of iron remains as energy source. The activities of this bacteria cause the change of corrosion products. As a result, it can be difficult to identify corrosion products promoting corrosion of iron remains. The purpose of this study, is to investigate the change in corrosion products that bacteria causes and to improve understanding about the corrosion of iron remains. To simulate corroded condition of excavated iron remains, carbon steel corroded by solution of NaCl and $Na_2SO_4$ was prepared. Then the prepared carbon steel was immersed in a liquid medium with bacteria. The incubation period was 42days. After experiment, the carbon steel was analyzed by SEM-EDS, X-ray diffraction method. The result is that the carbon was changed to green because of activity of bacteria and that the plate crystal and lozenge crystal were generated on the corrosion specimen. Also, we confirmed that the activities of bacteria differenciated colors and forms of corrosion products.

Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions (철근 보강된 ECC 기둥의 반복하중에 대한 이력거동)

  • Hyun, Jung-Hwan;Shim, Young-Heung;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.75-82
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate steel reinforced ECC (Engineered Cementitious Composites) column, which exhibits excellent crack control property and highly ductile behavior. Ordinary portland cement and high volume fly ash were used as binding materials in the mixture proportions for the purpose of achieving a high level of multiple cracking property with the tightly controlled crack width. To compare with the cyclic behavior of steel reinforced ECC column specimen, a conventional reinforced concrete column was prepared and tested under reversed cyclic loading condition. Based on the cyclic load test, ECC column exhibited higher cyclic behavior, compared to the conventional RC column, in terms of load carrying capacity and energy dissipation capacity.

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis (유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석)

  • Bang, Jin Soo;Youn, Ilro;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.91-99
    • /
    • 2020
  • Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.

Fabrication and characterization of $\alpha$-Fe$_2$O$_3$ thin film gas sensor by CVD (CVD법을 이용한 $\alpha$-Fe$_2$O$_3$박막 가스센서의 제조 및 물성평가)

  • 최성민;이세훈;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.280-285
    • /
    • 1999
  • $\alpha$-$Fe_2O_3$ thin film gas sensors were deposited at various temperature by CVD method. Polycrystalline $\alpha$-$Fe_2O_3$ thin films were deposited at $175^{\circ}C$ and $200^{\circ}C$. $\gamma$-$\alpha$-$Fe_2O_3$ phase was obtained when the deposition temperature was higher than $250^{\circ}C$. The crystallite size of $\alpha$-$Fe_2O_3$ was affected by the deposition and annealing temperature. The specimen deposited at $175^{\circ}C$ showed maximum sensitivity. In this condition, the sensitivity of $\alpha$-$Fe_2O_3$ thin film for NO gas (at 250 ppm) was 3.2 and response time (at 100ppm) was 12 second.

  • PDF

A Study on P-M Interaction Diagram of Fire-Damaged High Strength Concrete Column (화재 피해를 입은 고강도 RC 기둥의 P-M 상관곡선에 관한 연구)

  • Kim, Hyun-Jung;Choi, Eun-Gyu;Shin, Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.257-260
    • /
    • 2008
  • This study will make P-M interaction diagram of residual capacity at fire-damaged High strength concrete column with polypropylene fiber. Evaluating capacity of column decreasing spalling with P-M interaction diagram is important. because high strength concrete column with polypropylene fiber isn't section area loss. P-M interaction diagram that is made to analyze according to a various parameters is useful index for design and evaluating capacity of columns. In this study, spalling, temperature distribution of interior column, residual strength and movement of column in eccentric loading are studied with expose time of high temperature. For study fire test that is similar real act, and after cooling in normal condition residual strength of specimen is estimated. And this study use DIANA(Displacement Analyzer) for analyzing nonlinear analysis. with experiment temperature and strength data.

  • PDF

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator (사다리꼴 PZT/Ag Laminate 외팔보 발전기의 압전 에너지 하베스팅 특성)

  • Na, Yong-Hyeon;Lee, Min-Seon;Yun, Ji-Sun;Hong, Youn-Woo;Paik, Jong-Hoo;Cho, Jeong-Ho;Lee, Jung Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.462-468
    • /
    • 2018
  • The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.