• Title/Summary/Keyword: specific surface area

Search Result 1,593, Processing Time 0.022 seconds

Gas Sensing Properties and Mechanism of the $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ System Prepared by Coprecipitation Method (공침법으로 제조된 $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ 계의 가스감응특성 및 감응기구)

  • Yun, Gi-Hyeon;Im, Ho-Yeon;Gwon, Cheol-Han;Yun, Dong-Hyeon;Kim, Seung-Ryeol;Hong, Hyeong-Gi;Lee, Gyu-Jeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.813-818
    • /
    • 1998
  • Ultrafine powders of $\textrm{In}_{2}\textrm{O}_{3}$-doped $\textrm{SnO}_{2}$ were synthesized by a coprecipitation method and the effects of pH value and the amount of In2Q addition on particle size were investigated. The influence of pH value on particle size could be negligible, whereas the amount of $\textrm{In}_{2}\textrm{O}_{3}$ has influenced on particle size and specific surface area. The gas sensitivity to hydrocarbOn($\textrm{C}_{3}\textrm{H}_{8}$, $\textrm{C}_{4}\textrm{H}_{10}$) increased with $\textrm{In}_{2}\textrm{O}_{3}$ addition and reached a maximum at 3wt.% addition. From the results of impedance analysis and I-V characteristics. it was showed that the agglomeration structure of particles and the boundaries between agglomerates were the important factors to determine the gas sensing mechanism.

  • PDF

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve (메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성)

  • Choi, Jong Hwa;Jeong, Soon Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.675-682
    • /
    • 2005
  • Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of $H_2SiF_6$ and $Al(NO_3)_3{\cdot}9H_2O$. The material obtained was characterized by XRD, $N_2$-physisorption. The specific surface area was $981m^2/g$, and the average pore size was uniformity $39{\AA}$. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of $NH_3$-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst (Ti-구형활성탄의 유동상 광촉매 특성 평가)

  • Lee, Joon-Jae;Suh, Jeong-Kwon;Hong, Ji-Sook;Park, Jin-Won;Lee, Jung-Min
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.375-381
    • /
    • 2006
  • In this sturdy, spherical activated carbon(SPAC) contained $TiO_2$ was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by $TiCl_3$ aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about $350{\mu}m{\sim}400{\mu}m$ and $617m^2/g$ specific surface area. Structure of $TiO_2$ in Ti-SPAC was anatase and rutile form. Also, $TiO_2$ on SPAC were found that the $TiO_2$ were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.

Development of Packaging Materials for MA Packaging(1) (MA포장용 기능성 포장 소재개발에 관한 연구(1))

  • Park, Hyung-Woo;Park, Moo-Hyun;Kim, Hoon;Lee, Jae-Young;Yang, Han-Chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 1996
  • Various treaments such heating, acid tenting, acid healing, alkaline treating, acid+alkaline renting were attempted to investigate their effects on molar ratio, chemical composition, DTA and specific surface area(SSA) of natural zeolite poder. Molar ratio, Si to AI. of natural zeolite was 4.78, which represented high silica type. Composition of natural zeolite showed that $SiO_2$ was 66.34% $Al_2O_3$ was 13.89%, $Fe_2O_2$ was 1.55% X-ray diffraction showed that main component of natural zeolite was mordenite and clinoptliolite. Differential Thermal Analysis and Thermogravimetry curve of natural zeolite was showed to peak of endothermic peak at $80^{\circ}C$ and it means to the peak of dehydrate reaction, but recristalization was not formed below at $1,000^{\circ}C$. Weight loss during calcination was 16% at $1,000^{\circ}C$. Thermal treatments on SSA of natural zolite powder decreased from $75.2m^2/g\;to\;2.1m^2/g$. In contrast chemical treatments on SSA showed to increase to $300.2m^2/g$(1 N HCl treating), $54.9m^2/g$(1 N NaOH) and $90.9m^2/g$(HCl+NaOH)tudy, it could be proposed to employ acid tret method as packaging materisls for MA packaging.

  • PDF

Adsorption Characteristics of Commercial Wood Charcoal in Korea (I) (국내 시판용 목탄의 흡착 특성(I))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • To evaluate the basic characteristics and adsorption properties of commercial wood charcoal, we investigated the proximate analysis, porosimetry analysis, methylene blue adsorption, removal ratios of formaldehyde, and removal ratio of ethylene gas. Fixed carbon contents of traditional black and white charcoal, and mechanical charcoal were 51.8~76.6%, 72.9~84.6%, and 48.5~80.3%, respectively. Refining degrees of the most traditional black charcoal were 9, and those of white charcoal and mechanical charcoals were zero. Specific surface area of traditional black charcoal was 0.1~13.7 $m^2/g$, which was quite lower than that of white charcoal (53.2~372.6 $m^2/g$) and mechanical charcoals (224.3~464.6 $m^2/g$). Also, amounts of methylene blue adsorption were quite lower in black charcoal (0.53~1.97 mg/g) compared with white charcoal (2.68~7.68 mg/g) and mechanical charcoal (11.63~26.10 mg/g). Removal ratios of formaldehyde of the black charcoal were 11.4~26.7%, which is quite similar to white charcoal (17.9~34.9%) and mechanical charcoal (5.5~25.8%). Removal ratios of ethylene gas for traditional black charcoal, traditional white charcoal, and mechanical charcoal were 2.2~43.5%, 21.7~39.1%, 21.7~39.1%, respectively. There was no significant difference in the removal ratios of formaldehyde and ethylene gas among traditional black charcoal, traditional white charcoal, and mechanical charcoal.

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

$CO_2$ Sensing Characteristics of Carbon-nanofibers Based on Effects of Porosity and Amine Functional Group (다공성 및 아민 작용기에 따른 탄소나노섬유의 $CO_2$ 감응특성)

  • Kim, Jong Gu;Kang, Seok Chang;Shin, Eunjeong;Kim, Da Young;Lee, Jin Hee;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Porous carbon nanofibers were prepared as a gas sensor electrode to study the $CO_2$ sensing property based on effects of porosity and introduced amine functional groups. Electrospun fibers were obtained by using electrospinning method with polyacrylonitrile precursor and they were treated by the thermal treatment and chemical activation. Amine functional groups were introduced by the liquid state treatment using diethylenetriamine. The specific surface area increased up to $2000m^2/g$ by the chemical activation. The Introduced amine functional group was identified using FT-IR spectroscopy. $CO_2$ gas sensing property was improved as four folds via introduced amine functional groups on the activated carbon nanofiber. In conclusion, the gas sensing property was improved based on the developed porosity by the chemical activation and the chemical attraction of $CO_2$ gas by introduced functional groups.

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

Characteristics of Grain Size and Organic Matters in the Tidal Flat Sediments of the Suncheon Bay (순천만 갯벌의 입도조성 및 유기물 분포특성)

  • Jang, Sung-Guk;Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • The purpose of this study is to investigate the characteristics of the grain size distribution and organic matters to understand the current status of the tidal flat sediment for efficient management of Suncheon Bay. We investigated the characteristics of the surface sediments in the mouth area of the Suncheon Bay at fifteen stations in April and July, 2009. Specific conclusions were as follows. The sediments in the most part of tidal flat was shown as muddy facies(clay and silt contents was more than 90%), whereas in the tidal river affected by water flow from the Dongstream was shown as sandy facies. The analyzed values of the tidal flat sediment were in the range of $1.9{\sim}3.8{\phi}$(mean $2.5{\phi}$) for sorting, and -1.5~3.2(mean -0.3) for skewness, and 1.5~14.1(mean 3.9) for kurtosis. So we knew that the tidal flat sediments in the Suncheon Bay was mainly composed by fine-grained sediment. Erosion was happened in the tidal river, whereas sedimentation was occurred in the tidal flat. The most of organic matters was derived from the Dongstream. Total organic matters shown as ignition loss was 5.75%, COD and $H_2S$ values were lower than the eutrophication level(COD; 20.0 mg/g dry, $H_2S$; 0.2 mg S/g dry). From our research the tidal flat of the Suncheon Bay is relatively fine, but a part of the flat was exceed the environmental standard. So we have to establish effective countermeasures to reduce the organic matters and nutrients derived from stream for environmental preservation of the Suncheon bay and conduct scientifically sustainable monitering for streams flowing into Suncheon Bay and tidal flat.

Co2+ Adsorption Characteristics of Al2O3-TiO2 Composite Oxide Prepared by Hydrolysis of Metal Alkoxide (금속 알콕사이드의 가수분해법으로 제조한 Al2O3-TiO2 복합옥사이드의 Co2+ 흡착 특성에 관한 연구)

  • Ryu, Jae-Chun;Yang, Hyun-Soo;Kim, Yu-Hwan;Sung, Ki-Woung;Kim, Yong-Ik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1192-1203
    • /
    • 1996
  • $Al_2O_3-TiO_2$ composite oxide adsorbents which could be applied in high-temperature water were prepared by hydrolysis of aluminum and titanium alkoxide. The prepared adsorbents were calcined at $600{\sim}1400^{\circ}C$ and in order to investigate the various properties - the transition of crystals, thermal properties, and specific surface area, X-ray diffractometry, thermal analysis, FT-IR, SEM and BET method were employed. And the $Co^{2+}$ adsorption characteristics of these adsorbents in high-temperature water were investigated by batch adsorption experiment in a stirred autoclave. Since the adsorption of $Co^{2+}$ on the $Al_2O_3-TiO_2$ adsorbents was irreversible endothermic in the temperature range of $150{\sim}250^{\circ}C$, the standard enthalpy changes of 26, 43, and 80 mol% of $TiO_2$ on $Al_2O_3$ were in the range of $16.5{\sim}26.0kJ{\cdot}mol^{-1}$. The adsorbent of 26 mol% of $TiO_2$ on $Al_2O_3$ which was calcined at $600^{\circ}C$ for 2 hours showed the adsorption amount of $0.1674meq{\cdot}g^{-1}$ in the high temperature water at $250^{\circ}C$.

  • PDF