• Title/Summary/Keyword: specific surface

Search Result 3,783, Processing Time 0.04 seconds

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Characterization of relationship between particle size and powder properties for $BaTiO_3$ ($BaTiO_3$의 입도와 분체특성과의 상관 관계 연구)

  • Chun, M.P.;Cho, J.H.;Kim, B.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.244-251
    • /
    • 2005
  • The relationship between particle size of hydro-thermally synthesized barium titanate powders (BT01, BT02, BT03, BT04, BT05) and the powder properties was investigated by means of particle size, specific surface area, zeta potential, XPS, XRD and SEM. Particle size determined by laser light scattering is closely related with specific surface area and the tetragonality (c/a) obtained from XRD. The specific surface area of the samples inversely decreased with increasing particle size except BT03 powder. BT03 sample showed higher surface area than BT04 sample of equivalent particle size, which was attributed mostly to the agglomeration of particles in terms of SEM image and XRD analysis. Zeta potential increased with increasing particle size with the exception of BT02 and BT03 which showed larger minus value of zeta potential in comparison with other BT powders. Beta potential results of BT02 and BT03 are considered to be related with the dissolution of $Ba^{2+}$ ion in these powers which was examined by XPS.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon (활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성)

  • Tanveer, Ahmad;Park, Jeongmin;Choi, Sinang;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2018
  • Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.

Specific Surface Area Characteristic Analysis of Porous Carbon Prepared from Lignin-Polyacrylonitrile Copolymer by Activation Conditions (리그닌-PAN 공중합체로 제조한 다공성 탄소 소재의 활성화 처리 조건에 따른 비표면적 특성 연구)

  • LEE, Hyunsu;KIM, Seokju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • In this study, we investigated the effect of temperature on specific surface area and electrochemical properties when lignin-based porous carbon (LBPC) with potassium hydroxide (KOH) is activated. After preparing LBPCs using lignin-polyacrylonitrile (PAN) copolymer, which was synthesized by graft polymerizing lignin and acrylonitrile as a precursor, activated LBPCs (KA-LBPC-6, 7, 8, 9) were manufactured by activating LBPC with KOH at 600℃, 700℃, 800℃ and 900℃. To identify the surface characteristics of KA-LBPC, observations were made with a scanning electron microscopy (SEM), and the pore characteristics were identified via specific surface area analysis. The electrochemical properties were analyzed using a three-electrode system. The experiment has shown that micropores formed by activation can be observed in SEM images. KA-LBPC-7 had the best pore characteristics among KA-LBPCs, with a specific surface area of 2480.1 m2/g, a micropore volume of 0.64 cm3/g, and a mesopore volume of 0.76 cm3/g. KA-LBPC-7 showed the best electrochemical properties with a specific capacitance of 151.3 F/g at the scan rate of 2 mV/s.

Preparation of Activated Carbon from Waste Citrus Peels by ZnCl2 (ZnCl2를 이용하여 폐감귤박으로부터 활성탄 제조)

  • Kang, Kyung-Ho;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1091-1098
    • /
    • 2007
  • Activated carbon was prepared from waste citrus peels by chemical activation with $ZnCl_2$. The optimal condition of carbonization was at $300^{\circ}C$ for 1.5 hr. Activation experiments with carbonized samples prepared at optimal carboniztion condition were carried out under various conditions such as activation temperature of 400 to $900^{\circ}C$, activation time of 0.5 to 2.0 hr, and $ZnCl_2$ ratio of 100 to 300%. In order to investigate the physical properties of the activated carbons prepared, iodine adsorptivities and specific surface areas were measured and their morphologies were observed from scanning electron microscopy. As $ZnCl_2$ ratio increased, activation yield decreased, while iodine adsorptivity and specific surface area increased. The optimal condition of activation was at 300% $ZnCl_2$ ratio and $300^{\circ}C$ for 1.5 hr, and then iodine adsorptivity and specific surface area was measured as about 862 mg/g and $756m^2/g$, respectively. SEM photography showed that the surface morphology was changed and many active pore were produced by chemical activation.

A Study on Carbonization Characteristics of Indonesian and Korean Bamboo for Production of Bamboo Charcoal and Vinegar (죽탄 및 죽초액 제조를 위한 인도네시아산 및 국내산 대나무의 탄화특성 비교 연구)

  • Yang, Won;Kim, Hui-Yeol;Chae, Tae-Young;Ibik, K.;Pohan, H.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • Carbonization characteristics of Indonesian bamboos were investigated using lab-scale tube furnace, in order to find optimum design temperature of a carbonizer for producing bamboo charcoal and vinegar. The bamboo samples used in this study are local bamboos from Damyang in Korea, Andong and Petung in Indonesia. Correlation of electric resistance, specific surface area and pH of bamboo vinegar with pyrolysis temperature has been investigated. Electric resistance of the charcoal increased for higher pyrolysis temperature the specific surface area was also increased as carbonization temperature got higher. Charcoal which has specific surface area of over $300\;m^2/g$ could be produced at $700^{\circ}C$. pH of bamboo vinegar was decreased for highter carbonization temperature and vinegar under pH 3 could be produced for all bamboo samples. In this experimental condition, it was found that lower carbonization temperature is better for producing bamboo vinegar of high quality, while higher temperature is better for obtaining bamboo charcoal with larger surface.

Explosion Riskiness with Flying of Carbon Black Dust by Hartman (Hartman식 장치에 의한 Carbon Black 분진의 부유중 폭발 위험성 평가)

  • 현성호;김정환;이창우
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 1998
  • We investigated the weight loss according to temperature using Thermal Gravimetric Analysis(TGA) in order to find the thermal hazard of carbon black(Hi-Black 10, Hi-Black 50L) dusts, and the properties of dust explosion in variation of the surface functional groups and specific surface area of their dust with the same particle size. Using Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of carbon black dust. The explosion pressure of both carbon black increased as the specific surface area increased. The results indicated that Hi-Block 50L of which specific surface area was larger three to four times than that of Hi-Black 10 was much easier of dust explosion.

  • PDF