Characterization of relationship between particle size and powder properties for $BaTiO_3$

$BaTiO_3$의 입도와 분체특성과의 상관 관계 연구

  • Chun, M.P. (Advanced materials and components Lab., Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, J.H. (Advanced materials and components Lab., Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, B.I. (Advanced materials and components Lab., Korea Institute of Ceramic Engineering and Technology)
  • 전명표 (요업기술원 세라믹건재본부 첨단소재부품센터) ;
  • 조정호 (요업기술원 세라믹건재본부 첨단소재부품센터) ;
  • 김병익 (요업기술원 세라믹건재본부 첨단소재부품센터)
  • Published : 2005.12.31

Abstract

The relationship between particle size of hydro-thermally synthesized barium titanate powders (BT01, BT02, BT03, BT04, BT05) and the powder properties was investigated by means of particle size, specific surface area, zeta potential, XPS, XRD and SEM. Particle size determined by laser light scattering is closely related with specific surface area and the tetragonality (c/a) obtained from XRD. The specific surface area of the samples inversely decreased with increasing particle size except BT03 powder. BT03 sample showed higher surface area than BT04 sample of equivalent particle size, which was attributed mostly to the agglomeration of particles in terms of SEM image and XRD analysis. Zeta potential increased with increasing particle size with the exception of BT02 and BT03 which showed larger minus value of zeta potential in comparison with other BT powders. Beta potential results of BT02 and BT03 are considered to be related with the dissolution of $Ba^{2+}$ ion in these powers which was examined by XPS.

수열합성법에 의해 제조된 티탄산바륨 (BT01, BT02, BT03, BT04, BT05)의 입자크기와 분체특성과의 상관관계를 비표면적, 제타전위, XPS, XRD 및 SEM에 의해 조사하였다. 레이져광산법에 의해 측정된 입자의 크기는 비표면적과 XRD를 통해 결정된 격자이방성과 밀접한 관계가 있음을 보였다. 분말의 비표면적은 입자의 크기가 증가함에 따라 감소하였으며, BT03 시료는 동일한 입자크기의 BT04에 비하여 큰 비표면적을 보였으며, 이는 입자들의 응집에 기인하는 것으로 SEM사진 및 XRD 분석을 통하여 밝혀졌다. 입자의 크기가 증가함에 따라 제타전위는 증가하는 경향을 보였으며, BT02와 BT03 분말은 다른 분말에 비하여 제타전위가 큰 음의 값을 나타내었다. XPS 분석결과 분쇄시 티탄산바륨과 물 사이의 반응에 의한 $Ba^{2+}$ 이온의 용출과 관련이 있는 것으로 분석되었다.

Keywords

References

  1. S. Schlag and H.F. Eicke, 'Size driven phase transition in nanocrystalline $BaTiO_3$', Solid State Communications 91 (1994) 883 https://doi.org/10.1016/0038-1098(94)90007-8
  2. A.J. Moulson and J.M. Herbert, 'Electroceramics: materials properties and applications', Chapman and Hall, London (1990)
  3. H.A. Sauer and J.R. Fisher, 'Processing of positive-temperature-coefficient themistors', J. Am. Ceram. Soc. 43 (1960) 297
  4. W. Heywang, 'Semiconducting barium titanate', J. Mater. Sci. 6 (1971) 1214 https://doi.org/10.1007/BF00550094
  5. B. Huybrechts, K. Ishizaki and M. Tanaka, 'The positive temperature coefficient or resistivity in barium titanate', J. Mater. Sci. 30 (1995) 2463 https://doi.org/10.1007/BF00362121
  6. Y. Ohara, K. Koumoto and H. Yanagida, 'Barium titanate ceramics with high piezoelectricity fabricated from fibrous particles', J. Am. Ceram. Soc. 68 (1985) C-108
  7. G.A. Smolenskii, 'Ferroelectrics and Related Materials', Gordon and Breach, New York (1984)
  8. L.K. Templeton and J.A. Pask, 'Formation of $BaTiO_3$ from $BaCO_3$ and $TiO_2$ in air and in $CO_2$', J. Am. Ceram. Soc. 42 (1959) 212 https://doi.org/10.1111/j.1151-2916.1959.tb15455.x
  9. A. Beauger, J.C. Mutin and J.C. Niepce, 'Role and behavior of orthotitanate $Ba_2TiO_4$ during the processing of $BaTiO_3$ based ferroelectric ceramics', J. Mat. Sci. 19 (1984) 195 https://doi.org/10.1007/BF02403126
  10. J.C. Niepce and G. Thomas, 'About the mechanism of the solid-way synthesis of barium metatitanate. Industrial consequences', Solid. State. Ionics. 43 (1990) 69
  11. P.P. Phule and S.H. Risbud, 'Sol-gel synthesis of barium titanate. powders using barium acetate and titanium (IV) isopropoxide', Adv. Ceram. Mater. 3 (1988) 183 https://doi.org/10.1111/j.1551-2916.1988.tb00197.x
  12. G.J. Choi, H.S. Kim and YS. Cho, '$BaTiO_3$ particles prepared by microwave-assisted hydrothermal reaction using titanium acylate precursors', Mater. Lett. 41 (1999) 122 https://doi.org/10.1016/S0167-577X(99)00117-2
  13. C.T. Xia, E.W. Shi, W. Zhong and J. Guo, 'Preparation of $BaTiO_3$ by the hydrothermal method', J. Eur. Ceram. Soc. 15 (1995) 1171 https://doi.org/10.1016/0955-2219(95)00101-8
  14. S. Urek and M. Drofenik, 'The hydrothermal synthesis of $BaTiO_3$ fine particles from hydroxide-Alkoxide precursors', J. Eur. Ceram. Soc. 18 (1998) 279
  15. M.M. Lencka and R.E. Riman, 'Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates', Chem. Mater. 7 (1995) 18
  16. T.F. Lin and C.T. Hu, 'Influence of stoichiometry on the microstructure and positive temperature coefficient of resistivity of semiconducting barium titanate ceramics', J. Am. Ceram. Soc. 73 (1990) 531 https://doi.org/10.1111/j.1151-2916.1990.tb06549.x
  17. P.K. Gallagher and F. Schrey, 'Thermal decomposition of some substituted barium titanyl oxalated and its effect on the semiconducting properties of the doped materials', J. Am. Ceram. Soc. 46 (1985) 567 https://doi.org/10.1111/j.1151-2916.1963.tb14617.x
  18. T.T. Fang and H.B. Lin, 'Factors affecting the preparation of barium titanyl oxalate tetrahydrate', J. Am. Ceram. Soc. 72 (1989) 1899 https://doi.org/10.1111/j.1151-2916.1989.tb05998.x
  19. M. Rajendran and M.S. Rao, 'Formation of $BaTiO_3$ from citrate precursor', J. Solid. State Chem. 113 (1994) 239 https://doi.org/10.1006/jssc.1994.1366
  20. T.J. Carbone and J.S. Reed, 'Microstructure development in barium titanate: effects of physical and chemical inhomogenieties', Am. Ceram. Soc. Bull. 58 (1979) 512
  21. S. Venigalla, 'Advanced materials and powders-barium titanate,' Am. Ceram. Soc. Bull. 6 (2001) 63
  22. J. Jean and H. Wang, 'Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid)', J. Am. Ceram. Soc. 81 (1998) 1589 https://doi.org/10.1111/j.1151-2916.1998.tb02521.x
  23. C. Chiang and J. Jean, 'Effects of barium dissolution on dispersing aqueous barium titanate suspensions', Mater Chem. Phys. 80 (2003) 647 https://doi.org/10.1016/S0254-0584(03)00088-9
  24. U. Paik and V. Hackely, 'Influence of solids concentration on the isoelectric point of aqueous barium titanate', J. Am. Ceram. Soc. 83 (2000) 2381 https://doi.org/10.1111/j.1151-2916.2000.tb01565.x
  25. S.J. Gregg and K.S.W Sing, 'Adsorption, surface area and porosity', second ed., Academic Press, London (1982)
  26. H.W. Nesbitt, G.M. Bancroft, W.S. Fyfe, S.N. Karkhanis, A. Nishima and S. Shin, 'Thermodynamic stability and kinetics of perovskite dissolution', Nature 289 (1981) 358 https://doi.org/10.1038/289358a0
  27. S. Myhra, D. Savage, A. Atkinson and J.C. Riviere, 'Surface modification of some titanate minerals subjected to hydrothermal chemical attack', Am. Mineral. 69 (1984) 902
  28. S. Kumar, V.S. Raju and T.R.N. Kutty, 'Investigation on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy', Applied Surf. Sci. 206 (2003) 250
  29. M.C. Blanco Lopez, G. Fourlaris and F.L. Riley, 'Interaction of barium titanate powders with an aqueous suspending medium', J. Euro. Ceram. Soc. 18 (1998) 2183 https://doi.org/10.1016/S0955-2219(98)00139-3
  30. S. Sameshima, H. Yoshihiro and E. Yuka, 'Structural change in Sm- and Nd-doped ceria under a low oxygen partial pressure', J. Alloys and Compounds (2005)