• Title/Summary/Keyword: specific surface

Search Result 3,787, Processing Time 0.037 seconds

Development of the GIS Method for Extracting a Specific Geomorphic Surface of Coastal Terrace at Gampo Area, Southeastern Coast in Korea (GIS를 이용한 해안단구 지형면 분류 기법 연구 - 감포지역을 사례로 -)

  • 박한산;윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.4
    • /
    • pp.458-473
    • /
    • 2001
  • The classified map of geomorphic surfaces is the most basic data for the geomorphological research. Up to recent days, the traditional methods extracting specific geomorphic surfaces are accomplished by analyzing the aerial photographs and topographical maps, and field works. Also it needs a lot of time and expertness. Furthermore it is difficult to gain the aerial photographs in Korea. Since digital maps in Korean Peninsula are almost completed recently, we tried to extract specific surfaces by analyzing the characteristics of marine terraces based on the level of paleoshoreline and slope analysis on the terrace surface using GIS. However, research used GIS was hardly found up to date, therefore many problems are not be solved yet. The aim of this study is to develop the more efficient and objective method for the extraction and classification of specific geomorphic surfaces by using GIS in Gampo-eup, Gyeongju city, Southeastem Coast in Korea, where a lot of traditional research has already accomplished. For this aim, we have designed the process of extracting specific geomorphic surfaces, chosen the factors that was Gyeongiu city, Southeastem Coast in Korea, where a lot of traditional research has already accomplished. For this aim, we have designed the process of extracting specific geomorphic surfaces, chosen the factors that was suitable for classification of specific geomorphic surface, and presented method of setting up optimum criteria of extraction. As last, effectiveness and problems of these methods were investigated through conincidence rate and error rate.

  • PDF

The Changes of Specific Surface Area of Soils after Peroxidation and Its Implication for the Calculation of Critical toads of Soil Acidification (Peroxidation 전후의 토양 비표면적 변화와 토양산성화 임계부하량 계산에의 의의)

  • Yeo, Sang-Jin;Lee, Bumhan;Soyoung Sung;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.195-204
    • /
    • 2002
  • Mineralogy and the exposed surface area are two of the most important factors controlling dissolution and weathering rates of soils. The mixture of inorganic and organic materials of various size distributions and structures that constitute soils makes the calculation of weathering rates difficult. The surface area of soil minerals plays an important role in most of programs for calculating the weathering rates and critical loads. The Brunauer-Emmett-Teller (BET) measurement is recommended for the measurement of specific surface area. However, BET values measured without organic matter removal are in fact those far all the N2-adsorbed surface areas, including the surfaces covered and aggregated with organisms. Surfaces occupied by organisms are assumed to be more reactive to weathering by organic activities. Therefore, the BET surface area difference before and after organic removal depicts the area occupied by organisms. The present study shows that the BET values after organic matter removal using $H_2$O$_2$ are larger than those without removal by 1.68~4.87 $m^2$/g. This implies that BET measurement without organic removal excludes the reactive area occupied by organisms and that the area occupied by organisms in soils is much larger than expected. It is suggested that specific surface area measurement for calculating weathering rates of mineral soils should be made before and after organic matter removal. The results of a column experiment are presented to demonstrate the potential retarding influence that this organic matter may have on mineral dissolution and weathering.

The Optimized Formulas of Rye Bread on the Sensory Properties using RSM (RSM을 적용한 관능 특성에 따른 Rye Bread의 최적 Formulas에 대한 연구)

  • Kwon Kyung-Soohn
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.278-285
    • /
    • 2004
  • The effects of water, rye flour and vital gluten on the sensory properties of bread were studied by response surface methodology and sensory evaluations. A response surface model was used to evaluate the effects observed and to determine the optimum variations for rye bread. The study included 12 combinations of the following independent variables: Water(57, 62, 67%), Rye flour(0, 10, 30, 50%), and Vital gluten(0, 1, 3, 5%). Bread quality attributes determined were specific volume, color, texture, appearance, taste, chewiness, moisture, overall. Rye bread specific volume, sensory evaluation values and Instrumental testing results were significantly affected by variety (water, rye flour and vital gluten). Rye bread with a high specific volume was produced using water 67%, rye flour 10% and vital gluten 3%. Whereas, rye breads with a high overall sensory evaluation were water 62 %, rye flour 10 % and vital gluten 5%. And Specific volume predicted and overall preference also was shown high. It was shown that the experimental design used provided information about the rye bread of variation of water, rye flour and vital gluten and can be a useful supplement to standardized and optimized formulas in rye bread making. The results suggest that water, rye flour, vital gluten can be combined in rye bread making at various levels, contributing to optimize the functional properties of rye bread. These result represents that breads loaf volume related to directly consumer preference.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF

Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs (CNTs 합성을 통해 향상된 비표면적을 갖는 Ti 다공체의 제조)

  • Choi, Hye Rim;Byun, Jong Min;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride ($TiH_2$) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane ($CH_4$) gas to increase the specific surface area. The synthesized Ti porous body has $100{\mu}M$-sized macropores and $10-30{\mu}m$-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

Effect of Specific urface Area on the Gas Sensitive Properties (${\gamma}$-$Fe_2O_3$ 세라믹 가스감지소자;비표면이 가스감응성에 미치는 영향)

  • 신장욱;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 1986
  • This paper is concerned with a gas sensor composed of semi-conducting ${\gamma}$-$Fe_2O_3$ ceramics made by oxidizing $Fe_2O_3$ sintered body. Acicular $\alpha$-FeOOH powder prepared by precipitation of $FeSO_4$.$7H_2O$ solution was transformed to $FeSO_4$ sintered at 700$^{\circ}$-850$^{\circ}$C for 1 hr. and then oxidized to ${\gamma}$-$Fe_2O_3$ The gas sensitive properties of ${\gamma}$-$Fe_2O_3$ ceramic bodies based on the lectrical resistance change was measured in 0.5-2 vol% $H_2$ and $C_2$ $H_2$ gas at 35$0^{\circ}C$ The specific surface area of sintered specimen largely dependent on the sintering temperature and grain shape directly affected the gas sensitive pro-perties of ${\gamma}$-$Fe_2O_3$gas sensor. Specimens having larger specific surface area showed better sensitivity which means the electrical resistance change due to oxidation and reduction process occurs on ly at the surface of grains microscopically in the ${\gamma}$-$Fe_2O_3$ceramics. Micropores made in $Fe_2O_3$ powder during dehydration of $\alpha$-FeOOH can not prompt the gas sensitive properties of sintered ${\gamma}$-$Fe_2O_3$ because they are sintered or closed in the grains during sintering process and dose not affect the specific surface area of sintered body.

  • PDF

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation (주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해)

  • Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Jihun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2 has the wide bandgap which allows it to be used as the photocatalyst. There are many studies to enhance the photocatalytic properties of SnO2. In this study, 3-dimensional SnO2 aerogel was synthesized using epoxide-initiated sol-gel method for the optimal specific surface area. Also, graphene oxide (GO) was added before the gelation process of the aerogel to maximize the specific surface area. Addition of 0.5 wt% of GO would possibly enhance the specific surface area by 1.7 times compared with the bare tin oxide aerogel. Furthermore, enhanced specific surface area could degrade 67.3% of initial Rhodamine B in 120 minutes. To compare with the bare SnO2 aerogel, 0.5 wt% GO addition to SnO2 could double the reaction rate of the photocatalytic degradation.