Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.3.235

Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs  

Choi, Hye Rim (Department of Materials Science and Engineering, Hanyang University)
Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University)
Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.23, no.3, 2016 , pp. 235-239 More about this Journal
Abstract
This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride ($TiH_2$) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane ($CH_4$) gas to increase the specific surface area. The synthesized Ti porous body has $100{\mu}M$-sized macropores and $10-30{\mu}m$-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
Keywords
Titanium porous body; freeze drying method; carbon nanotube (CNT); catalytic chemical vapor deposition (CCVD); specific surface area;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 John Banhart: Prog. Mater Sci., 46 (2001) 559.   DOI
2 G. J. Davies and Shu Zhen: Prog. Mater Sci., 18 (1983) 1899.   DOI
3 H. Nakajima: Prog. Mater Sci., 52 (2007) 1091.   DOI
4 Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang, Y. Z. Liu and L. M. Wang: J. Alloys Compd., 384 (2004) 93.   DOI
5 M.-J. Suk, J. S. Kim and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 366 (Korean).   DOI
6 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
7 T. Fukasawa. Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523.   DOI
8 Y. I. Seo, Y. M. Kim, Y. J. Lee, D.-G. Kim, K. H. Lee and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2009) 22 (Korean).
9 N. Sano, S. Yamamoto and H. Tamon: Carbon, 50 (2012) 5618.   DOI
10 J. H. Park, J. M. Byun, H. S. Kim, M.-J. Suk, S.-T. Oh and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 371 (Korean).   DOI
11 V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng., A, A356 (2003) 190.
12 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nat. Mater., 8 (2009) 966.   DOI
13 K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.
14 A. Magrez, J. W. Seo, R. Smajda, M. Mionic and L. Forro: Mateials, 3 (2010) 4871.
15 F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostruct., 3 (2013) 333.
16 H. Sharma, A. K. Shukla and W. D. Vankar: J. Appl. Phys., 110 (2011) 003726.