DOI QR코드

DOI QR Code

Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs

CNTs 합성을 통해 향상된 비표면적을 갖는 Ti 다공체의 제조

  • Choi, Hye Rim (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • Received : 2016.03.25
  • Accepted : 2016.04.12
  • Published : 2016.06.28

Abstract

This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride ($TiH_2$) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane ($CH_4$) gas to increase the specific surface area. The synthesized Ti porous body has $100{\mu}M$-sized macropores and $10-30{\mu}m$-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.

Keywords

References

  1. John Banhart: Prog. Mater Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. G. J. Davies and Shu Zhen: Prog. Mater Sci., 18 (1983) 1899. https://doi.org/10.1007/BF00554981
  3. H. Nakajima: Prog. Mater Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  4. Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang, Y. Z. Liu and L. M. Wang: J. Alloys Compd., 384 (2004) 93. https://doi.org/10.1016/j.jallcom.2004.04.084
  5. M.-J. Suk, J. S. Kim and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 366 (Korean). https://doi.org/10.4150/KPMI.2014.21.5.366
  6. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  7. T. Fukasawa. Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955
  8. Y. I. Seo, Y. M. Kim, Y. J. Lee, D.-G. Kim, K. H. Lee and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2009) 22 (Korean).
  9. N. Sano, S. Yamamoto and H. Tamon: Carbon, 50 (2012) 5618. https://doi.org/10.1016/j.carbon.2012.06.025
  10. J. H. Park, J. M. Byun, H. S. Kim, M.-J. Suk, S.-T. Oh and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 371 (Korean). https://doi.org/10.4150/KPMI.2014.21.5.371
  11. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng., A, A356 (2003) 190.
  12. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nat. Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  13. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.
  14. A. Magrez, J. W. Seo, R. Smajda, M. Mionic and L. Forro: Mateials, 3 (2010) 4871.
  15. F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostruct., 3 (2013) 333.
  16. H. Sharma, A. K. Shukla and W. D. Vankar: J. Appl. Phys., 110 (2011) 003726.