• Title/Summary/Keyword: specific power.

Search Result 2,635, Processing Time 0.024 seconds

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.

A STUDY ON THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH ETHANOL GASOLINE BLENDED FUEL

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.170-174
    • /
    • 2014
  • This paper presents the influences of ethanol addition to gasoline on bench test a spark ignition engine performances and emissions characteristics. The use of ethanol gasoline blended fuels decrease the brake power and brake torque, and increases the brake specific fuel consumption (BSFC). Ethanol gasoline blended fuels show lower brake torque and brake power and higher BSFC than gasoline. When ethanol containing oxygen is blended with gasoline, the combustion of the engine becomes better and therefore CO emission is reduced. HC emissions decrease to some extent as ethanol added to gasoline increase, as the percentage of ethanol in the blends increased, NOx emission was decreased under various engine speeds.

Development of the Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eunh-Wan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.7-11
    • /
    • 2011
  • A velocity-compounded(VC) turbine for the 75ton turbopump was developed as an improved performance backup for the single-rotor baseline turbine. Curvic coupling was adopted for the power transmission between the rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that VC turbine can generate 20.5% higher specific power than the baseline turbine.

  • PDF

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Thrust Performances of a Very Low-Power Micro-Arcjet

  • Hotaka Ashiya;Tsuyoshi Noda;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.611-616
    • /
    • 2004
  • In this study, microfabrication of a micro-arcjet nozzle with Fifth-harmonic generation Nd:YAG pulses (wavelength 213 nm) and its thrust performance tests were conducted. A micro-arcjet nozzle was machined in a 1.2 mm thick quartz plate. Sizes of the nozzle were 0.44 mm in width of the nozzle exit and constrictor diameter of 0.1 mm. For an anode, a thin film of Au (~100 nm thick) was deposited by DC discharge PVD in vacuum on divergent part of the nozzle. As for a cathode, an Au film was also coated on inner wall surface. In operational tests, a stable discharge was observed for mass flow of 1.0mg/sec, discharge current of 6 ㎃, discharge voltage of 600 V, or 3.6 W input power (specific power of 3.6 MW/kg). In this case, plenum pressure of the discharge chamber was 80 ㎪. With 3.6 W input power, thrust obtained was 1.4 mN giving specific impulse of 138 sec with thrust efficiency of 24 %.

  • PDF

Predictive Current Control of Four-Quadrant Converters Based on Specific Sampling Method and Modified Z-Transform

  • Zhang, Gang;Qian, Jianglin;Liu, Zhigang;Tian, Zhongbei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.179-189
    • /
    • 2019
  • Four-quadrant converters (4QCs) are widely used as AC-DC power conversion interfaces in many areas. A control delay commonly exists in the digital implementation process of 4QCs, especially for high power 4QCs with a low switching frequency. This usually results in alternating current distortion, increased current harmonic content and system instability. In this paper, the control delay is divided into a computation delay and a PWM delay. The impact of the control delay on the performance of a 4QC is briefly analyzed. To obtain a fundamental value of AC current that is as accurately as possible, a specific sampling method considering the PWM pattern is introduced. Then a current predictive control based on a modified z-transform is proposed, which is effective in reducing the control delay and easy in terms of digital implementation. In addition, it does not depend on object models and parameters. The feasibility and effectiveness of the proposed predictive current control method is verified by simulation and experimental results.

The Strategy of Wireless Power Transfer for Light Rail Transit By Core Technologies Analysis Based on Text Mining

  • Meng, Xiang-Yu;Han, Young-Jae;Eum, Soo-Min;Cho, Sung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.193-201
    • /
    • 2018
  • In this paper, we extracted relevant patent data and conducted statistical analysis to understand the technical development trend related to Wireless Power Transfer (WPT) for Light Rail Transit (LRT). Recently, with the development of WPT technologies, the Light Rail Transit (LRT) industry is concentrating on applying WPT to the power supply system of trains because of their advantages compared wired counterpart, such as low maintenance cost and high stability. This technology is divided into three areas: wireless feeding and collecting technology, high-frequency power converter technology and orbital and infrastructure technology. From each specific area, key words in patent document were extracted by TF-IDF method and analyzed by social network. In the keyword network, core word of each specific technology were extracted according to their degree centrality. Then, the multi-word phrases were also built to represent the concept of core technologies. Finally, based on the analysis results, the development strategies for each specifics technical area of WPT in LRT filed will be provided.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

A Study on Accuracy Improvement in Measuring Liquid Level inside Pressurized Vessels (압력 용기 수위 측정 오차 개선에 관한 연구)

  • Kim, Ho-Yol;Byun, Seung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1889-1893
    • /
    • 2010
  • Differential pressure type level measuring systems have been using widely for industrial applications like drum level measurements in power plants. Because of difficulties in specific gravity compensation for vapor and liquid inside the vessel and the sensing lines, this type of measuring systems reveal significant measuring error. In this paper, the major reason causing errors on the differential pressure type level measurement is analyzed and a method of more accurate calculation for specific gravity compensation is introduced.

Precision Grinding Characteristics of Hardened Steel (경화 열처리강의 정밀연삭가공)

  • Choi, Won Sik;Bae, Dae Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.355-361
    • /
    • 2005
  • In this study, the effects of the maximum undeformed chip thickness on grinding characteristics of hardened steel in down-grinding have been investigated. The meaured grinding forces become larger as the workpiece velocity increases. The specific energy, e decreases as the maximum undeformed chip thickness increase. When the maximum undeformed chip thickness is the same, the specific energy, e decreases as the grain size increases.