• Title/Summary/Keyword: specific energy absorption value

Search Result 15, Processing Time 0.028 seconds

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

Solvent Effects on the Solvatochromism of 7-Aminocoumarin Derivatives in Neat and Binary Solvent Mixtures: Correlation of the Electronic Transition Energies with the Solvent Polarity Parameters

  • Choi, Jin-Yeong;Park, Eun-Ju;Chang, Seung-Hyun;Kang, Tai-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1452-1458
    • /
    • 2009
  • The change in the electronic absorption and emission energy of 7-aminocoumarin derivatives in binary solvent mixtures has been studied. The electronic transition energy along with the Stokes' shift is correlated with the orientation polarizability of the solvent as well as the empirical solvent polarity parameters $E_T$ (30). It is observed that the emission peak shift traces the change of $E_T$ (30) value very closely in binary solvent mixtures. The emission transition more strongly depends on the solvent polarity than the absorption, which indicates the dipole moment gets larger on excitation. From the dependence of the Stokes’ shift of 7-aminocoumarins with the solvent polarity parameters and the ground state dipole moment obtained by the semi-empirical calculations, the excited state dipole moment was estimated. The fluorescence lifetime change of 7-aminocoumarins in binary solvent mixtures was measured and the results are explained in terms of molecular conformation and solvent polarity. The study indicates the empirical solvent polarity $E_T$ (30) is a good measure of microscopic solvent polarity and it probes in general the non-specific solvent interactions.

CHEST WALL THICKNESS MEASUREMENTS AND THE DOSIMETRIC IMPLICATIONS FOR MALE RADIATION WORKERS AT THE KAERI

  • Lee, Tae-Young;Lee, Jong-Il;Chang, Si-Young;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.299-303
    • /
    • 2001
  • Using ultrasound techniques, the Korea Atomic Energy Research Institute has measured chest wall thicknesses of a group of male workers at the Korea Atomic Energy Research Institute. A site-specific biometric equation has been developed for these workers. Chest wall thickness is an important modifier on lung counting efficiency. These data have been put into the perspective of the ICRP recommended dose limits for occupationally exposed workers: 100 mSv in a 5-year period with a maximum of 50 mSv in anyone year. For measured chest wall thicknesses of 1.9 cm to 4.1 cm and a 30 min counting time, the achievable MDAs for natural uranium in the KAERI lung counter vary from 5.75 mg to 11.28 mg. These values are close to, or even exceed, the predicted amounts of natural uranium that will remain in the lung (absorption type M and S) after an intake equal to the Annual Limit on Intake corresponding to a committed dose of 20 mSv. This paper shows that the KAERI lung counter probably cannot detect an intake of Type S natural uranium in a worker with a chest wall thickness equal to the average value (2.7 cm) under routine counting conditions.

  • PDF

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF

Investigation of the suitability of new developed epoxy based-phantom for child's tissue equivalency in paediatric radiology

  • Yucel, Haluk;Safi, Aziz
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4158-4165
    • /
    • 2021
  • In this study, tissue equivalency (TE) of a newly developed epoxy-based phantom to 3-5 years child's tissue was investigated in paediatric energy range. Epoxy-based TE-phantoms were produced at different glandular/adipose (G/A) ratios of 17/83%, 31/69%, 36/64% and 10/90%. A procedure was developed in which specific amounts of boron, calcium, magnesium, sulphur compounds are mixed with epoxy resin, together with other minor substitutes. In paediatric energy range of 40-60 kVp half-value layer (HVL) values were measured and then Hounsfield Units (HU) were determined from Computed Tomography(CT) scans taken in the X-ray energy range of 80-120kVp. It is found that radiation absorption properties of these phantoms in terms of the measured HVL values related to linear attenuation coefficients (µ) are very well mimicking a 3 years child's soft tissue in case a ratio of 10/90%G/A. Additionally, the HU values of phantoms were determined from the CT scans. The HU = 47.8 ± 4.8 value was found for the epoxy-based phantom produced at a ratio of 10/90%G/A. The obtained HVL and HU values also support the suitability of the new epoxy based-phantom produced at a ratio of 10/90%G/A for a satisfactory mimicking a 3 years child's soft tissue by 5%. Thus they can have a potential use to perform the quality controls of medical X-ray systems and dose optimization studies.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

Some Physical Properties and Adsoptive Behaviors of Wood Charcoal Carbonized with Domestic wood (국산수종으로 탄화한 목탄의 물성 및 흡착성)

  • Jo, Tae-Su;Lee, Oh-Kyu;Ahn, Byung-Jun;Choi, Joon-Weon
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • Properties of wood charcoal made from the domestic wood species at $300-900^{\circ}C$ have investigated to understand the correlation between carbonization temperature and chemical and physical characteristics of wood charcoal. In terms of charcoal yield at particular carbonization temperatures, it was drastically decreased until the temperature reaches up to $600^{\circ}C$ and the decrease ratio of yield was reduced at higher temperatures. As the carbonization temperature increased, pH of the wood charcoal increased so that it became basic at last. The wood charcoal prepared at $600{\sim}700^{\circ}C$ showed the highest caloric value and those of wood charcoals made at higher temperature became plateau at a little lower level than the peak. The caloric value of Japanese larch charcoal was a bit higher than that of Red oak charcoal. The carbon content in the wood charcoal was increased as the carbonization temperature increased, whereas the hydrogen content was decreased. Specific surface area of the wood charcoal became larger with increase in temperature up to $600^{\circ}C$ but it was decreased or reduced in the increasing ratio after, and then it rose again at higher temperature than $800^{\circ}C$. Absorption capacity of the wood charcoal against iodine and gaseous acetic acid became greater as the carbonization temperature increased. Japanese larch charcoal presented higher absorption capacity than Red oak charcoal. As the above results, it is revealed that carbonization temperature affects the chemical and physical properties of wood charcoal. Therefore, to use wood charcoal with maximum effect it should be prepared at optimum temperature for proper use.

  • PDF

A Study on Improving Shock Absorption Test of Safety Helmet (안전모의 충격 흡수성 시험 개선에 관한 연구)

  • Sang Woo Shim;Yong Su Sim;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.36-42
    • /
    • 2023
  • In this study, 50 ABE-type hard hats were procured from five certified commercial manufacturers, and shock absorption tests were conducted in accordance with Protective Equipment Safety Certification Notice No. 2020-35. The tests were performed under both high- and low-temperature conditions, adhering to safety helmet testing standards. The highest shock transmission ranges were recorded in the tests, with an average energy range of 2,600-4,108 N at high temperatures and 2,316-3,991 N at low temperatures. All five hard hat models demonstrated a maximum transmitted impact force below 4,450 N, without any loss of cap and attachment functionality, confirming their compliance with performance standards. Furthermore, we evaluated the side impact performance of the safety helmets of each company, with an average range of 4,722-5,267 N. Company A exhibited the lowest measurement at 4,722 N. Comparing these results with international safety standards and the national shock absorption test criteria, it was observed that the maximum transmitted shock value using government-specified impact weight falls within the range of 4,450-5,000 N. However, it was noted that developed countries have established specific standards for the side impact forces on safety helmets, which are legally mandated. Consequently, it is imperative for South Korea to enhance its safety helmet side impact performance test methodology to align with domestic standards in the future.