• Title/Summary/Keyword: specific RNA

Search Result 1,718, Processing Time 0.03 seconds

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.

Involvement of GRP78 in the Resistance of Ovarian Carcinoma Cells to Paclitaxel

  • Zhang, Li-Ying;Li, Pei-Ling;Xu, Aili;Zhang, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3517-3522
    • /
    • 2015
  • Background: Glucose regulated protein 78 (GRP78) is a type of molecular chaperone. It is a possible candidate protein that contributes to development of drug resistance. We first examined the involvement of GRP78 in chemotherapy-resistance in human ovarian cancer cell. Materials and Methods: The expression of GRP78 mRNA and protein were examined by RT-PCR and western blotting, respectively, in human ovarian cancer cells line (HO-8910). Sensitivity of HO-8910 to paclitaxel was determined with methyl thiazolyl tetrazolium (MTT). Suppression of GRP78 expression was performed using specific small-interfering RNA (siRNA) in HO-8910 cells, and cell apoptosis was assessed by flow cytometry. Statistical analysis was performed using the SPSS 15.0 statistical package. Results: HO-8910 cells, with high basal levels of GRP78, exhibited low sensitivity to paclitaxel. The mRNA and protein levels of GRP78 were dramatically decreased at 24h, 48h and 72h after transfection and the sensitivity to paclitaxel was increased when the GRP78 gene was disturbed by specific siRNA transfection. Conclusions: The results suggested that high GRP78 expression might be one of the molecular mechanisms causing resistance to paclitaxel, and therefore siRNA of GRP78 may be useful in tumor-specific gene therapy for ovarian cancer.

Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p

  • Wang, Changhong;Qi, Shan;Xie, Cheng;Li, Chunfu;Wang, Pu;Liu, Dongmei
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.99.1-99.11
    • /
    • 2018
  • Objective: The present study is to evaluate the biological functions of long non-coding RNA (lncRNA), X-inactive specific transcript, X-inactive specific transcript (XIST) in human epithelial ovarian cancer (EOC). Methods: XIST was upregulated in EOC cell lines, CAOV3 and OVCAR3 cells by lentiviral transduction. The effects of XIST overexpression on cancer cell proliferation, invasion, chemosensitivity and in vivo tumor growth were investigated, respectively. Possible sponging interaction between XIST and human microRNA hsa-miR-214-3p was further evaluated. Furthermore, hsa-miR-214-3p was overexpressed in XIST-upregulated CAOV3 and OVCAR3 cells to evaluate its effect on XIST-mediated EOC regulation. Results: Lentivirus-mediated XIST upregulation had significant anticancer effects in CAOV3 and OVCAR3 cells by suppressing cancer cell proliferation, invasion, increasing cisplatin chemosensitivity and inhibiting in vivo tumor growth. Hsa-miR-214-3p was confirmed to directly bind XIST, and inversely downregulated in XIST-upregulated EOC cells. In EOC cells with XIST upregulation, secondary lentiviral transduction successfully upregulated hsa-miR-214-3p expression. Subsequently, hsa-miR-214-3p upregulation functionally reversed the anticancer effects of XIST-upregulation in EOC. Conclusion: Upregulation of lncRNA XIST may suppress EOC development, possibly through sponging effect to induce hsa-miR-214-3p downregulation

Correlation Between Enhancing Effect of Sodium Butyrate on Specific Productivity and mRNA Transcription Level in Recombinant Chinese Hamster Ovary Cells Producing Antibody

  • Jeon, Min-Kyoung;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1036-1040
    • /
    • 2007
  • Sodium butyrate (NaBu) has been used to enhance protein expression levels in mammalian cell culture. To determine the clonal variability of recombinant Chinese hamster ovary (rCHO) cells in response to NaBu addition regarding specific antibody productivity $(q_{Ab})$, three rCHO clones were subjected to different concentrations of NaBu. For all three clones, NaBu addition inhibited cell growth and decreased cell viability in a dose-dependent manner. On the other hand, the enhancing effect of NaBu on $q_{Ab}$ varied significantly among the clones. NaBu addition enhanced the antibody production of only one clone. RT-PCR analysis revealed that the changes in $q_{Ab}$ correlated linearly with those of the mRNA transcription level. Thus, it was concluded that the different enhancing effects of NaBu on protein expression in rCHO cell clones resulted from their different mRNA transcription levels.

Discovery of Novel RNA Targets Using Chemical Genomics

  • Yu, Jae-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.93-93
    • /
    • 2003
  • RNA plays an important role in numerous biological processes but little is known about the interactions between small organic molecules and RNA. Our previous work has shown that the heterodimeric compound designed by conjugation with neomycin and loop-specific chemical bind to the stem-loop structured RNA motifs. In the present study, heterodimer was used, in a reverse way, as a probe to identify structured RNA motifs. (omitted)

  • PDF

Massive Identification of Cancer-Specific Nucleic Acid Ligands

  • Lee, Young Ju;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.77-80
    • /
    • 2005
  • Targeting of complex system such as human cells rather than biochemically pure molecules will be a useful approach to massively identify ligands specific for the markers associated with human disease such as cancer and simultaneously discover the specific molecular markers. In this study, we developed in vitro selection method to identify nuclease-resistant nucleic acid ligands called RNA aptamers that are specific for human cancer cells. This method is based on the combination of the cell-based selection and subtractive systematic evolution of ligands by exponential enrichment (SELEX) method. These aptamers will be useful for cancer-specific ligands for proteomic research to identify cancer-specific molecular markers as well as tumor diagnosis and therapy.

Fed-Batch Fermentation of High-Content RNA Yeast by Using Molasses Medium. (당밀 배지를 이용한 고함량 RNA효모의 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.234-239
    • /
    • 2001
  • In order to maximize the RNA accumulation and biomass production is Saccharomyces cerevisiae MTY62, a high-content RNA yeast strain, batch and fed-batch cultures were performed. Among the feeding modes of fed-batch cultures examined, the intermittent feeding mode R\`(IFB-lV), in which 50 ml of 40% molasses and 20% com steep liquor (CSL) solution was intermittently fed for 5 times, resulted in the cell concentration of 33.8 g- dry cell weight/1 and the RNA concentration of 5221 mg-/l, and RNA content of 153 mg-RNA/g-dry cell weight. The constant fed-batch with feeding mode III (CFB-III), in which the feeding rate of 40% molasses and 20% CSL solution was stepwisely decreased from 48 mph (9-13 h), to 24 mph (13-21 h), and to 18 ml/h (21∼ 48 h), gave the highest cell concentration of 42.7 g-dry ceil weigh71 and R7IA concentration of 5536 mg-RNA/1, which were about 2.4-fold and 1.9-fold increased levels, respectively, compared to the results of batch culture. However, the RNA con- tent of 130 mg-RNA/g-dry cell weight of the fed-batch was lower than that of the batch culture (171 mg-RNA/g-dry cell weight) and other fed-batch cultures. When the specific growth rates in the fed-batch cultures were increased, the RNA contents increased. This result indicates that the RNA content is adversely proportional to the cell concen- tration. However, at the same specific growth rate, the RNA content was maintained at higher level in the intermit- tent fed-batch than in the constant fed-batch culture.

  • PDF

Finding Specific Disease Related microRNA Using by Ranking Score with Integrated miRNA Database (miRNA 데이터베이스 통합 및 순위 결정에 의한 특정 질병 관련 microRNA의 추출 방법)

  • Ha, Ji-Hwan;Kim, Hyun-Jin;Park, Sang-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.671-674
    • /
    • 2014
  • 최근 MicroRNA(miRNA)가 질병 발생과 밀접한 연관성이 있다고 밝혀진 이래, 이와 관련된 연구가 활발히 진행되고 있다. 하지만 각종 질병 관련 miRNA의 기능과 역할 그리고 질병 발생 메카니즘 등이 명백히 밝혀진 것이 없는 실정이다. 본 논문에서는 여러 종류의 miRNA 데이터베이스(miRecords, miRTarBase, miR2Disease 등)를 통합하고, 본 논문에서 새로이 제안하는 scoring 방법과 특정 질병과 관련된 miRNA의 순위결정과정을 통하여 질병과 연관성이 높은 miRNA을 밝혀내는 방법을 제안한다. 새로이 제안하는 방법을 바탕으로 miRNA와 특정 질병과의 연관성을 효과적으로 밝혀냈다.

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.