Correlation Between Enhancing Effect of Sodium Butyrate on Specific Productivity and mRNA Transcription Level in Recombinant Chinese Hamster Ovary Cells Producing Antibody

  • Jeon, Min-Kyoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Gyun-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2007.06.30

Abstract

Sodium butyrate (NaBu) has been used to enhance protein expression levels in mammalian cell culture. To determine the clonal variability of recombinant Chinese hamster ovary (rCHO) cells in response to NaBu addition regarding specific antibody productivity $(q_{Ab})$, three rCHO clones were subjected to different concentrations of NaBu. For all three clones, NaBu addition inhibited cell growth and decreased cell viability in a dose-dependent manner. On the other hand, the enhancing effect of NaBu on $q_{Ab}$ varied significantly among the clones. NaBu addition enhanced the antibody production of only one clone. RT-PCR analysis revealed that the changes in $q_{Ab}$ correlated linearly with those of the mRNA transcription level. Thus, it was concluded that the different enhancing effects of NaBu on protein expression in rCHO cell clones resulted from their different mRNA transcription levels.

Keywords

References

  1. Bae, G. W., D. W. Jeong, H. J. Kim, G. M. Lee, H. W. Park, T. B. Choe, S. M. Kang, I. Y. Kim, and I. H. Kim. 2006. High productivity of t-PA in CHO cells using hypoxia response element. J. Microbiol. Biotechnol. 16: 695-703
  2. Bae, S. W. and G. M. Lee. 2005. Intracellular responses of antibody-producing H69K-NGD transfectoma subjected to hyperosmotic pressure. J. Microbiol. Biotechnol. 15: 579- 586
  3. Chang, B. S., K. S. Kim, and J. H. Kim. 1999. NAcetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic. Res. 30: 85-91 https://doi.org/10.1080/10715769900300091
  4. Chung, B. S., Y. T. Jeong, K. H. Chang, J. S. Kim, and J. H. Kim. 2001. Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J. Microbiol. Biotechnol. 11: 1087-1092
  5. Cockett, M. I., C. R. Bebbington, and G. T. Yarranton. 1990. High-level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/Technology 8: 662-667 https://doi.org/10.1038/nbt0790-662
  6. Dorner, A. J., L. C. Wasley, and R. J. Kaufman. 1989. Increased synthesis of secreted protein induces expression of glucose regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264: 20602-20607
  7. Gorman, C. M., B. H. Howard, and R. Reeves. 1983. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11: 7631- 7648 https://doi.org/10.1093/nar/11.21.7631
  8. Hunt, L., P. Batard, M. Jordan, and F. M. Wurm. 2002. Fluorescent proteins in animal cells for process development: Optimization of sodium butyrate treatment as an example. Biotechnol. Bioeng. 77: 528-537 https://doi.org/10.1002/bit.10108
  9. Kim, E. J., D. J. Kim, H. Y. Hwang, J. S. Yoon, Y. Yoon, and K. H. Baek. 2004. High-level expression of recombinant human interleukin-2 in Chinese hamster ovary cells using the expression system containing transcription terminator. J. Microbiol. Biotechnol. 14: 810-815
  10. Kim, J. H., S. W. Bae, H. J. Hong, and G. M. Lee. 1996. Decreased chimeric antibody productivity of KR12H-1 transfectoma during long-term culture results from decreased antibody gene copy number. Biotechnol. Bioeng. 51: 479-487 https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<479::AID-BIT11>3.3.CO;2-2
  11. Kim, N. S., S. J. Kim, and G. M. Lee. 1998. Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: Stability in the absence of selective pressure. Biotechnol. Bioeng. 60: 679-688 https://doi.org/10.1002/(SICI)1097-0290(19981220)60:6<679::AID-BIT5>3.0.CO;2-Q
  12. Kim, N. S., T. H. Byun, and G. M. Lee. 2001. Key determinants in the occurrence of clonal variation in humanized antibody expression of CHO cells during dihydrofolate reductase mediated gene amplification. Biotechnol. Prog. 17: 69-75 https://doi.org/10.1021/bp000144h
  13. Kim, N. Y., Y. J. Lee, H. J. Kim, J. H. Choi, J. K. Kim, K. H. Chang, J. H. Kim, and H. J. Kim. 2004. Enhancement of erythropoietin production from Chinese hamster ovary (CHO) cells by introduction of the urea cycle enzymes, carbamoyl phosphate synthetase I and ornithine transcarbamylase. J. Microbiol. Biotechnol. 14: 844-851
  14. Laubach, V. E., E. T. Garvey, and P. A. Sherman. 1996. High-level expression of human inducible nitric oxide synthase in Chinese hamster ovary cells and characterization of the purified enzyme. Biochem. Biophys. Res. Commun. 218: 802-807 https://doi.org/10.1006/bbrc.1996.0143
  15. Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 71: 73-84 https://doi.org/10.1016/0092-8674(92)90267-G
  16. Na, K. H., S. C. Kim, K. S. Seo, S. H. Lee, W. B. Kim, and K. C. Lee. 2005. Purification and characterization of recombinant human follicle stimulating hormone produced by Chinese hamster ovary cells. J. Microbiol. Biotechnol. 15: 395-402
  17. Oh, H. K., M. K. So, J. Yang, H. C. Yoon, J. S. Ahn, J. M. Lee, J. T. Kim, J. U. Yoo, and T. H. Byun. 2005. Effect of N-acetylcysteine on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-${\beta}-1a$. Biotechnol. Prog. 21: 1154-1164 https://doi.org/10.1021/bp050057v
  18. Oster, T., C. Thioudellet, I. Chevalot, C. Masson, M. Wellman, A. Marc, and G. Siest. 1993. Induction of recombinant human gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem. Biophys. Res. Commun. 193: 406-412 https://doi.org/10.1006/bbrc.1993.1638
  19. Palermo, D. P., M. E. DeGraaf, K. R. Marotti, E. Rehberg, and L. E. Post. 1991. Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J. Biotechnol. 19: 35-47 https://doi.org/10.1016/0168-1656(91)90073-5
  20. Renard, J. M., R. Spagnoli, C. Mazier, M. F. Salles, and E. Mandine. 1988. Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems. Biotechnol. Lett. 10: 91-96 https://doi.org/10.1007/BF01024632
  21. Yoon, S. K., S. O. Hwang, and G. M. Lee. 2004. Enhancing effect of low culture temperature on specific antibody productivity of recombinant Chinese hamster ovary cells: Clonal variation. Biotechnol. Prog. 20: 1683-1688 https://doi.org/10.1021/bp049847f
  22. Zhao, Y., J. Lu, H. Sun, X. Chen, W. Huang, D. Tao, and B. Huang. 2005. Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem. Biophys. Res. Commun. 326: 811-816 https://doi.org/10.1016/j.bbrc.2004.11.118