• Title/Summary/Keyword: specific RNA

Search Result 1,729, Processing Time 0.027 seconds

A ketogenic diet reduces body weight gain and alters insulin sensitivity and gut microbiota in a mouse model of diet-induced obesity

  • Sumin Heo;Soo Jin Yang
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • Purpose: Ketogenic diets (KDs) have anti-obesity effects that may be related to glucose control and the gut microbiota. This paper hypothesizes that KD reduces body weight and changes the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity. Methods: In this study, C57BL/6 male mice were assigned randomly to 3 groups. The assigned diets were provided to the control and high-fat (HF) diet groups for 14 weeks. The KD group was given a HF diet for 8 weeks to induce obesity, followed by feeding the KD for the next 6 weeks. Results: After the treatment period, the KD group exhibited a 35.82% decrease in body weight gain compared to the HF group. In addition, the KD group demonstrated enhanced glucose control, as shown by the lower levels of serum fasting glucose, serum fasting insulin, and the homeostatic model assessment of insulin resistance, compared to the HF group. An analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed a significant decrease in the proportion of Firmicutes when the KD was administered. In addition, feeding the KD reduced the overall alpha-diversity measures and caused a notable separation of microbial composition compared to the HF diet group. The KD also led to a decrease in the relative abundance of specific species, such as Acetatifactor_muris, Ligilactobacillus_apodemi, and Muribaculum_intestinale, compared with the HF group. These species were positively correlated with the body weight, whereas the abundant species in the KD group (Kineothrix_alysoides and Saccharofermentans_acetigenes) showed a negative correlation with body weight. Conclusion: The current study presents supporting evidence that KD reduced the body weight and altered the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity.

Increased interleukin-6 and TP53 levels in rotator cuff tendon repair patients with hypercholesterolemia

  • Jong Pil Yoon;Seung Gi Min;Jin-Hyun Choi;Hyun Joo Lee;Kyeong Hyeon Park;Sung Hyuk Yoon;Seong Soo Kim;Seok Won Chung;Hun-Min Kim;Dong Hyun Kim
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.296-303
    • /
    • 2022
  • Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05). Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

Phylogenetic placement of thermophilic ammonium-tolerant bacteria and their distribution in various composts

  • Kazutaka Kuroda
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.671-678
    • /
    • 2023
  • Objective: Previous studies isolated the thermophilic ammonium-tolerant (TAT) bacterium Bacillus sp. TAT105 that grew in composting swine manure with the assimilation of ammonium nitrogen and reduced ammonia emissions during composting. Those studies also investigated the potential for applications of TAT105 to composting. It was observed that the concentration of TAT bacteria, phylogenetically close to TAT105, increased during composting. The objectives of this study were to identify the phylogenetic placement of these TAT bacteria and investigate their distribution in various composts. Methods: The phylogenetic placement of TAT105 was examined based on the sequence of 16S ribosomal RNA gene. The genomic DNA homology between TAT105 and the type strains of bacterial species that were phylogenetically close to TAT105 were examined by DNA-DNA hybridization. Moreover, the tolerances of these strains to NH4Cl and NaCl were analyzed using a cultivation method. Concentrations of TAT bacteria in various composts were evaluated using an agar medium specific to TAT bacteria and polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: TAT105 was most closely related to Bacillus thermolactis and Bacillus kokeshiiformis. Many variants of these species have been detected in various environments, including composts. The type strains of these species displayed TAT characteristics that were similar to those of TAT105. Among the composts examined in this study, TAT bacteria were detected at high concentrations (105 to 109 colony forming units per gram of dry matter) in most of the composts made from cattle manure, swine manure, bark, and excess sludge. Conclusion: TAT bacteria comprised B. thermolactis, B. kokeshiiformis, and their phylogenetically close relatives. They were considered to be adaptable to composting of some certain materials, and a favorable target for searching for strains with some useful function that could be applied to composting of these materials.

Inhibition of Melanosome Transport by Inducing Exon Skipping in Melanophilin

  • Jin Young Kim;Seon-Young Han;Kiho Sung;Jeong Yeon Seo;Cheol Hwan Myung;Chan Song Jo;Jee Hoe Yoon;Ji Yun Park;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.466-472
    • /
    • 2023
  • Exon skipping is an efficient technique to inhibit specific gene expression induced by a short-sequence peptide nucleic acid (PNA). To date, there has been no study on the effects of PNA on skin pigmentation. In melanocytes, the tripartite complex is responsible for the transport of mature melanosomes from the nucleus to the dendrites. The tripartite complex is composed of Rab27a, Mlph (Melanophilin), and Myosin Va. Defects in the protein Mlph, a melanosome transport-related protein, are known to cause hypopigmentation. Our study shows that Olipass peptide nucleic acid (OPNA), a cell membrane-permeable PNA, targets exon skipping in the Mlph SHD domain, which is involved in Rab27a binding. Our findings demonstrate that OPNA induced exon skipping in melan-a cells, resulting in shortened Mlph mRNA, reduced Mlph protein levels, and melanosome aggregation, as observed by microscopy. Therefore, OPNA inhibits the expression of Mlph by inducing exon skipping within the gene. These results suggest that OPNA, which targets Mlph, may be a potential new whitening agent to inhibit melanosome movement.

Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells

  • Suyeon Ahn;Ahreum Kwon;Youngsoo Oh;Sangmyung Rhee;Woo Keun Song
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.387-398
    • /
    • 2023
  • Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.

A study on the characteristics and pathogenicity of Aeromonas veronii isolated from infected goldfish (Carassius auratus) (피부 궤양이 발생한 금붕어(Carassius auratus)에서 분리한 Aeromonas veronii의 특성 및 병원성 분석)

  • Hyeon Ki Jung;Min Su Kim;Sok Ho Kim;Min Soon Choi
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.79-88
    • /
    • 2024
  • Aeromonas spp. infections have been reported to cause significant economic losses not only in the ornamental fish industry but also in aquaculture. In December 2022-January 2023, an Aeromonas infection occurred on a goldfish in korea, A gram-negative bacterium was isolated from the skin and internal organs of infected goldfish (Carassius auratus). The results showed that the isolate was identified as Aeromonas veronii using 16S rDNA targeted oilgpnucleotide primers, furthermore characteristics of A. veronii was confirmed by enterotoxin gene, infectious experiment, antibiotic resistance. In-vivo pathogenicity of isolates to goldfsh resulted in 100% mortality in challenged host within one week of post experiment injection. As a result of PCR analysis targeting three enterotoxin-encoding genes, cytotoxic enterotoxin (act) was identified in A. veronii isolate in this study. Antimicrobial susceptibility pattern of isolate showed it was to susceptible to most antimicrobial agents tested but resistant to ampicillin, imipenem, meropenem and clindamycin.

Cynomolgus Macaque Model for COVID-19 Delta Variant

  • Seung Ho Baek;Hanseul Oh;Bon-Sang Koo;Green Kim;Eun-Ha Hwang;Hoyin Jung;You Jung An;Jae-Hak Park;Jung Joo Hong
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.48.1-48.13
    • /
    • 2022
  • With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Distinct sets of lysosomal genes define synucleinopathy and tauopathy

  • Kyu Won Oh;Dong-Kyu Kim;Ao-Lin Hsu;Seung-Jae Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.657-662
    • /
    • 2023
  • Neurodegenerative diseases are characterized by distinct protein aggregates, such as those of α-synuclein and tau. Lysosomal defect is a key contributor to the accumulation and propagation of aberrant protein aggregates in these diseases. The discoveries of common proteinopathies in multiple forms of lysosomal storage diseases (LSDs) and the identification of some LSD genes as susceptible genes for those proteinopathies suggest causative links between LSDs and the proteinopathies. The present study hypothesized that defects in lysosomal genes will differentially affect the propagation of α-synuclein and tau proteins, thereby determining the progression of a specific proteinopathy. We established an imaging-based high-contents screening (HCS) system in Caenorhabditis elegans (C. elegans) model, by which the propagation of α-synuclein or tau is measured by fluorescence intensity. Using this system, we performed RNA interference (RNAi) screening to induce a wide range of lysosomal malfunction through knock down of 79 LSD genes, and to obtain the candidate genes with significant change in protein propagation. While some LSD genes commonly affected both α-synuclein and tau propagation, our study identified the distinct sets of LSD genes that differentially regulate the propagation of either α-synuclein or tau. The specificity and efficacy of these LSD genes were retained in the disease-related phenotypes, such as pharyngeal pumping behavior and life span. This study suggests that distinct lysosomal genes differentially regulate the propagation of α-synuclein and tau, and offer a steppingstone to understanding disease specificity.