• Title/Summary/Keyword: species-specific primer

Search Result 332, Processing Time 0.041 seconds

PCR-Based Sensitive Detection of Wood-Decaying Fungus Phellinus linteus by Specific Primer from rDNA ITS Regions

  • Park, Dong-Suk;Kang, Hee-Wan;Kim, Ki-Tae;Cho, Soo-Muk;Park, Young-Jin;Shin, Hye-Sun;Lee, Byoung-Moo;Go, Seung-Joo
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • Based on the rDNA ITS sequences data, specific primer set for PCR detection of wood-decaying fungus Phellinus linteus was designed. The length of PCR products using designed primer set(SHF and SHR) was about 540 bp. Among 11 species, 17 isolates of Phellinus spp. including Phellinus linteus, P. pomaceus, P. spiculosus, P. baumi, P. pini, P. igniarius, P. gilvus, P. biscuspidatus, P. weirii, P. johnsonianus, P. robutus, and P. igniarius, seven isolates of Phellinus linteus showed about 540 bp-sized single band. This molecular technique could offer a useful tool for detecting and identifying Phellinus linteus.

  • PDF

Development of a Multiplex Reverse Transcription-Polymerase Chain Reaction Assay for the Simultaneous Detection of Three Viruses in Leguminous Plants

  • Park, Chung Youl;Min, Hyun-Geun;Lee, Hong-Kyu;Maharjan, Rameswor;Yoon, Youngnam;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.348-352
    • /
    • 2018
  • A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) assay was developed for the detection of Clover yellow vein virus (ClYVV), Peanut mottle virus (PeMoV), and Tomato spotted wilt virus (TSWV), which were recently reported to infect soybean and azuki bean in Korea. Species-specific primer sets were designed for the detection of each virus, and their specificity and sensitivity were tested using mixed primer sets. From among the designed primer sets, two combinations were selected and further evaluated to estimate the detection limits of uniplex, duplex, and multiplex RT-PCR. The multiplex RT-PCR assay could be a useful tool for the field survey of plant viruses and the rapid detection of ClYVV, PeMoV, and TSWV in leguminous plants.

Development of Species-Specific PCR Primers for the Rapid and Simultaneous Identification of the Six Species of Genus Takifugu

  • Dong, Chun Mae;Park, Yeon Jung;Noh, Jae Koo;Noh, Eun Soo;An, Cheul Min;Kang, Jung-Ha;Park, Jung Youn;Kim, Eun-Mi
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Pufferfish (Takifugu spp.) are economically important edible marine fish. Mistakes in pufferfish classification can lead to poisoning; therefore, accurate species identification is critical. In this study, we used the mtDNA cytochrome c oxidase subunit I gene (COI) to design specific primers for six Takifugu species among the 21 domestic or imported pufferfish species legally sold for consumption in Korea. We rapidly and simultaneously identified these pufferfish species using a highly efficient, multiplex polymerase chain reaction (PCR) system with the six species-specific primers. The results showed that species-specific multiplex PCR (multiplex species-specific polymerase chain reaction; MSS-PCR) either specifically amplified PCR products of a unique size or failed. MSS-PCR yielded amplification fragment lengths of 897 bp for Takifugu pardalis, 822 bp for T. porphyreus, 667 bp for T. niphobles, 454 bp for T. poecilonotus, 366 bp for T. rubripes, and 230 bp for T. xanthpterus using the species-specific primers and a control primer (ca. 1,200 bp). We visualized the results using agarose gel electrophoresis to obtain accurate contrasts of the six Takifugu species. MSS-PCR analysis is easily performed and provides identification results within 6 h. This technique is a powerful tool for the discrimination of Takifugu species and will help prevent falsified labeling, protect consumer rights, and reduce the risk of pufferfish poisoning..

Qualitative PCR Detection of vitamin E-enriched GM Perilla (비타민 E 강화 유전자변형 들깨에 대한 정성 PCR 분석법)

  • Kim, Jae-Hwan;Ahn, Ji-Hye;Song, Hee-Sung;Kim, Kyung-Hwan;Kim, Dong-Hern;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.192-195
    • /
    • 2006
  • For the development of a qualitative PCR detection method for genetically modified perilla (Perilla frutescens), perilla species-specific gene, KAS-I (Beta-ketoacyl-ACP synthase I), was selected and validated as suitable for the use as an endogenous reference gene in perilla. Primer specificity was first tested by the means of qualitative PCR analysis. The primer pair Pfru3-F/R amplifying the perilla endogenous gene, KAS-I, gave rise to an amplicon 95 bp. No amplified product was observed when DNA samples from 15 different plants were used as templates. Qualitative PCR detection method was assayed with vitamin E-enriched GM Perilla developed in Korea. For the qualitative PCR detection method, the construct-specific detection primer pairs were constructed. The primer pair TMTO-F/R amplifying the junction region of TMT (${\gamma}$-tocopherol methyltransferase) gene and OCS (Octopine synthase) terminator introduced in GM perilla gave rise to an amplicon 148 bp.

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee;Jin A Lee;Dae-Han Chae;Hwi-Seo Jang;Young-Joon Choi;Dalsoo Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.382-388
    • /
    • 2022
  • White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Identification of Meat Species Using Species-Specific PCR-RFLP Fingerprint of Mitochondrial 12S rRNA Gene (미토콘드리아 12S rRNA 유전자의 종 특이적 PCR-RFLP Fingerprint를 이용한 식육 원료의 판별)

  • Park, Jong-Keun;Shin, Ki-Hyun;Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.209-215
    • /
    • 2007
  • In order to develop a sensitive and reliable method for the species-specific molecular markers, PCR-RFLP assay of the mitochondrial DNA(mt DNA) 12S rRNA gene was exploited for the identification of the origin of animal meat species including cattle, pig, sheep, goat, horse, deer, chicken, duck and turkey. A specific primer pairs were designed, based on the nucleotide sequences of mt 12S rRNA gene, for the amplification of the highly conserved region in the gene of the animal species using PCR-RFLP technique. mt DNA was isolated from meat samples followed by DNA amplification using PCR with the specific primers. PCR amplification produced an approximately 455 bp fragment in each of these animal meats. To distinguish pleat species, the PCR amplicons were digested with restriction endonucleases Tsp5091 and MboI, respectively, which generates distinct RFLP profiles. The DNA profiles digested with Tsp5091 allowed the clear discrimination in the mammalian meat species and the DNA profiles digested with MboI in poultry meat species. Therefore, the PCR-RFLP profiles of mt 12S rRNA gene could be very useful to identify the origin of the raw materials in the raw meats as well as the processed meat products.

Comparison of Conventional Culture Method, Enzyme Immune Method, and PCR for the Rapid Detection of Salmonella spp. in Pet Food (반려동물 사료의 Salmonella spp. 신속검출을 위한 증균배양법, 면역학적 검출법 및 종 특이 프라이머를 이용한 PCR 방법 비교)

  • Yun, Hyejeong;Cha, Sun Ho;Lee, Seung-Hwa;Jeong, Min-Hee;Na, Tae-Woong;Kim, Haejin;Cho, Hyunjeong;Hong, Seong-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The purpose of this study was to compare the conventional culture method, enzyme immune method and the PCR method using species-specific primer in the analysis on the Salmonella spp. found in domestically distributed pet foods. For the study, Salmonella spp. were detected from 175 samples. From the conventional culture method and the PCR method, two samples (jerky and corn gluten) were determined as positive. Also, from the enzyme immune method, one sample (corn gluten) was test-positive. The study revealed that application of the PCR method with species-specific primer allows better distinguishment between the species of the strain collected from the samples than the conventional culture method and/or the enzyme immune method.

Development and Application of PCR-Based Weissella Species Detection Method with recN Gene Targeted Species-Specific Primers (RecN 유전자 특이적 PCR을 이용한 Weissella 속 유산균의 검출법 개발 및 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • PCR-based Weissella species-specific detection method was developed to apply for the discrimination of Korean and Chinese kimchi by detecting a Weissella species only found in Korean or Chinese kimchi. PCR primers were designed from the species-specific sequence in the recN gene of each species. The primers allowed the species-specific detection and identification of nine species in the genera Weissella, and were successfully applied to the detection of W. cibaria, W. confusa, W. koreensis, and W. soli in kimchi with 20 ng template DNA. W. cibaria, W. confusa, and W. koreensis were detected from the Korean kimchi samples tested but W. soli was not detected. However, the four species were detected from Chinese kimchi samples. PCR-based W. soli-specific detection could not be perfectly applied as the Chinese kimchi discriminating method but has significance as an approach to evaluate the potential of scientific verification method based on the difference of microbial community.

Rapid and Specific Identification of Genus Cynoglossus by Multiplex PCR Assays Using Species-specific Derived from the COI Region (다중 PCR 분석법을 이용한 참서대과 어종의 신속하고 정확한 종판별 분석법 개발)

  • Noh, Eun Soo;Kang, Hyun Sook;An, Cheul Min;Park, Jung Youn;Kim, Eun Mi;Kang, Jung Ha
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1007-1014
    • /
    • 2016
  • A highly efficient, rapid, and reliable multiplex polymerase chain reaction based method for distinguishing ten species of genus Cynoglossus (C. senegalensis, C. abbreviates, C. macrolepidotus, C. arel, C. semilaevis, C. interruptus, C. joyneri, C. lingua, C. robustus, and C. monodi) is described. The species-specific primer sets were designed base on the cytochrome oxidase subunit I gene (1,500 bp). The optimal PCR conditions and primers were selected for ten of Cynoglossus species to determine target base sequences using single PCR. Multiplex PCR using the ten pairs of primers either specifically amplified a DNA fragment of a unique size or failed, depending on each species DNA. The length of amplification fragment of 208 bp for C. senegalensis, 322 bp for C. abbreviates, 493 bp for C. macrolepidotus, 754 bp for C. arel, 874 bp for C. semilaevis, 952 bp for C. interruptus, 1,084 bp for C. joyneri, 1,198 bp for C. lingua, 1,307 bp for C. robustus, and 1,483 bp for C. monodi with the species-specific primers, visualized by agarose gel electrophoresis, allowed perfectly distinction of the Cynoglossus species. The multiplex PCR assay can be easily performed on multiple samples and attain final results in less than 6 hours. This technique should be a useful addition to the molecular typing tools for the tentative identification of Cynoglossus species.

Development and validation of a PCR method to discriminate between Branchiostegus japonicus and Branchiostegus albus (옥돔과 옥두어 판별을 위한 PCR 검사법 개발과 검증)

  • Kim, Na-Ye-Seul;Yang, Ji-Young;Kim, Jung-Beom
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.295-299
    • /
    • 2019
  • We developed and validated species-specific primers for Branchiostegus japonicus and Branchiostegus albus to prevent the sale of B. albus as B. japonicus. Primers for B. japonicus and B. albus were designed against the cytochrome b gene. Multiplex PCR showed a 288 bp amplicon for B. japonicus, a 159 bp amplicon for B. albus, and a 502 bp amplicon for the internal control. The PCR product bands for B. japonicus, B. albus, and the internal control were present at 1 ng each. The specificity and sensitivity of the primers developed in this study were validated by testing 38 B. japonicus strains and 13 B. albus strains. Using this monitoring method, fake fish did not appear due to the agreement between the experimental results and the species. Therefore, the developed multiplex PCR method was suitable for differentiating B. japonicus and B. albus.