• Title/Summary/Keyword: species richness

Search Result 681, Processing Time 0.023 seconds

Species richness related to landscape characteristics of uninhabited islands in Korea

  • Rho, Paikho
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.105-114
    • /
    • 2010
  • The principal objective of this study was to characterize the relationships between geographical conditions (e.g., island area, distance to mainland) and landscape structures of uninhabited islands, and to evaluate the effects of islands and their landscape structures on species richness. One hundred randomly selected islands and 5,000 m buffered areas derived from the boundaries of each island were used to summarize the number of observed bird species, and landscape pattern indices, particularly patch density, edge density, shape index, and mean nearest neighboring distance. Spatial arrangements of individual patch type at the class level, which are markedly affected by the distance from an island to the mainland, have a superior ability to explain the variances in species richness, as compared to the geographical conditions and landscape pattern indices at the landscape level. The results demonstrate that the patch type landscape structure is the primary factor affecting species richness, as well as the distance to the mainland. In particular, landscape pattern indices of cropland/pasture and woody cover are statistically significant in terms of explaining species richness, which suggests that food resources and appropriate conditions in landscape structures of habitat types are assumed as important elements in attracting bird species. This study also proposes the importance of evaluation on the landscape structure of each island, in order to designate protected areas and to establish a management plan for species conservation in uninhabited islands.

Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea

  • Adhikari, Pradeep;Shin, Man-Seok;Jeon, Ja-Young;Kim, Hyun Woo;Hong, Seungbum;Seo, Changwan
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.298-307
    • /
    • 2018
  • Background: Subalpine ecosystems at high altitudes and latitudes are particularly sensitive to climate change. In South Korea, the prediction of the species richness of subalpine plant species under future climate change is not well studied. Thus, this study aims to assess the potential impact of climate change on species richness of subalpine plant species (14 species) in the 17 mountain national parks (MNPs) of South Korea under climate change scenarios' representative concentration pathways (RCP) 4.5 and RCP 8.5 using maximum entropy (MaxEnt) and Migclim for the years 2050 and 2070. Results: Altogether, 723 species occurrence points of 14 species and six selected variables were used in modeling. The models developed for all species showed excellent performance (AUC > 0.89 and TSS > 0.70). The results predicted a significant loss of species richness in all MNPs. Under RCP 4.5, the range of reduction was predicted to be 15.38-94.02% by 2050 and 21.42-96.64% by 2070. Similarly, under RCP 8.5, it will decline 15.38-97.9% by 2050 and 23.07-100% by 2070. The reduction was relatively high in the MNPs located in the central regions (Songnisan and Gyeryongsan), eastern region (Juwangsan), and southern regions (Mudeungsan, Wolchulsan, Hallasan, and Jirisan) compared to the northern and northeastern regions (Odaesan, Seoraksan, Chiaksan, and Taebaeksan). Conclusions: This result indicates that the MNPs at low altitudes and latitudes have a large effect on the climate change in subalpine plant species. This study suggested that subalpine species are highly threatened due to climate change and that immediate actions are required to conserve subalpine species and to minimize the effect of climate change.

The clonal seaweed Chondrus crispus as a foundation species

  • Scrosati, Ricardo A.
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • The clonal seaweed Chondrus crispus (Rhodophyta, Gigartinales) forms extensive stands at low intertidal elevations on wave-sheltered rocky shores of the North Atlantic. This study investigates if this bushy alga acts as a foundation species in such habitats. The abundance (percent cover) of C. crispus, all other algae, and invertebrates was measured in 390 quadrats spanning 350 km of coast in Nova Scotia, Canada. In these low-intertidal habitats, fucoid algae are the largest organisms and can form extensive canopies, but their cover was unrelated to benthic species richness and to C. crispus cover. Species richness, however, increased with C. crispus cover from low to intermediate cover values, showing little change towards full C. crispus cover. Species composition (a combined measure of species identity and their relative abundance) differed between quadrats with low (0-1%) and high (60-100%) cover of C. crispus. High C. crispus cover was associated to more invertebrate species but fewer algal species than low C. crispus cover. However, the average abundance of algal and invertebrate species occurring in both cover groups was often higher under high C. crispus cover, contributing to a higher average richness at the quadrat scale. Overall, only 16% of the observed variation in species richness was explained by C. crispus cover. Therefore, this study suggests that C. crispus acts as a foundation species but with a moderate influence.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.

Latitude and Altitude Affects the Distribution and Population Features of Osmia spp. in Korea

  • Kyu-Won Kwak;Young-Bo Lee;Kathannan Sankar;Su Jin Lee;Kyeong Yong Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Reports of a global decline in pollinator populations, especially mason bees, have raised concerns regarding the maintenance of pollination interactions. Although addressing local factors causing bee decline is a potential mitigation strategy at the landscape scale, regional rates and high-latitude threats to bee diversity are unclear. We investigated the distribution of mason bees (Osmia. spp. (O. pedicornis, O. corniforns, O. taurus, and O. satoi) and measured species richness and species ratios at regional, latitudinal, and altitudinal scales. We examined the association between bee species richness and three putative environmental conditions: high-low, altitude-dependent, and latitude-dependent. The species richness of the O. pedicornis bee was the highest and it was found between latitudes 35° and 37°, and at 500-600 m in both the northern and southern hemispheres, showing an inverse latitudinal gradient of bee species richness in South Korea. Mason bee species richness and global climate are important predictors of flowering plant diversity. Climate change threatens bee and vascular plant diversity; however, the overlap between bee abundance and plant diversity can be improved by employing suitable conservation strategies.

The Relationship between Local Distribution and Abundance of Butterflies and Weather Factors

  • Choi, Sei-Woong
    • The Korean Journal of Ecology
    • /
    • v.26 no.4
    • /
    • pp.199-202
    • /
    • 2003
  • According to the energy hypothesis, the energy input per unit area primarily determines species richness in regions of roughly equal area. Some energy-related ecological research included identification of major climatic variables to determine regional species richness. In this study, the local butterfly species richness was examined to find out whether weather variables affected the local distribution or abundance of butterfly populations. Butterfly monitoring data from May 2001 to April 2002 taken at Mt. Yudal, Mokpo, in the southwestern part of Korea, and six weather variables (monthly mean values of temperature, precipitation, evaporation, wind speed, air pressure, and sunlight) were analyzed. Multiple regression analysis showed that only temperature explained 80% and 70% of the variability of log-transformed number of species and individuals, respectively, indicating that temperature played an important role in local species richness. Furthermore, global warming could affect the abundance and distribution of butterflies regionally as well as locally.

Relative importance of climatic and habitat factors on plant richness along elevation gradients on the Mt. Baekhwa, South Korea (백화산 고도별 식물 종풍부도에 대한 기후 및 서식지 인자의 상대적 중요성)

  • Lee, Chang-Bae;Chun, Jung-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.233-242
    • /
    • 2018
  • This study explored the richness patterns of vascular plant species and evaluated the effects of the climatic and habitat variables on the observed patterns along elevational gradients on the Mt. Baekhwa, South Korea. Plant data were recorded from 70 plots and a total of 187 plant species with 78 woody and 109 herbaceous species were recorded along two study transects, the Banyasa and Bohyunsa transects, on the Mt. Baekhwa. A total of 154 plant species with 66 woody and 88 herbaceous species and 131 plant species with 58 woody and 73 herbaceous species were recorded along the Banyasa and Bohyunsa transects, respectively. We used simple ordinary least squares regression model, multi-model inference and variation partitioning to analyze the relative contribution of climatic and habitat variables on the elevational richness patterns. Species richness pattern for vascular plants along the Banyasa transect monotonically decreased with elevation, whereas plant species richness showed reversed hump-shaped pattern along the Bohyunsa transect. Although the elevational patterns of species richness for vascular plants were different between the both transects, habitat variables are more important predictors than climatic variables for the elevational patterns of plant species richness along our study transects on the Mt. Baekhwa. These results indicate that elevational diversity patterns of vascular plants may be different even between nearby elevational transects in a mountain ecosystem but the diversity patterns may be controlled by same drivers.

Potential impact of climate change on plant invasion in the Republic of Korea

  • Adhikari, Pradeep;Jeon, Ja-Young;Kim, Hyun Woo;Shin, Man-Seok;Adhikari, Prabhat;Seo, Changwan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.352-363
    • /
    • 2019
  • Background: Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results: Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions: Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.

Species Richness of Aquatic Insects in Wetlands along the Altitudinal Gradient in Jeju, Korea : Test of Rapoport's Rule (고도에 따른 제주 습지 수서곤충의 종풍부성 변화 : Rapoport 법칙의 검정)

  • Jeong, Sang-Bae;Kim, Dong-Soon;Jeon, Hyeong-Sik;Yang, Kyoung-Sik;Kim, Won-Taek
    • Korean journal of applied entomology
    • /
    • v.49 no.3
    • /
    • pp.175-185
    • /
    • 2010
  • The effect of altitude and latitude on biodiversity (or species richness) has been a topic of great interest for many biogeographers for a long time. This study was conducted to examine the dynamics of species richness of aquatic insects along the altitudinal gradient in 24 wetlands on Mt. Halla, Jeju and test the Rapoport's rule. The species richness of aquatic insects monotonically decreased with increasing altitude, showing a significant inverse correlation (r = -0.64). However, the pattern of species richness with altitude showed a hump-shaped relationship, with a peak in species richness at intermediate elevations when the effects of area were removed. The altitudinal range of species tended to increase with increasing altitude, as Rapoport's rule predicts. There was a positive correlation between the altitudinal range size and the midpoint of the range size (Median) except for Hemiptera (Odonata: r = 0.75, Hemiptera: r = -0.22, Coleoptera: r = 0.72, Total: r = 0.55). Also, the extent of average altitudinal range of high-altitude species was 904.3m, and it was significantly wider than a 469.5m of low-altitude species. Consequently, the species richness of aquatic insects in wetlands on Mt. Halla along the altitudinal gradient well supported Rapoport's rule.

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula (한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구)

  • Shin, Man-Seok;Seo, Changwan;Lee, Myungwoo;Kim, Jin-Yong;Jeon, Ja-Young;Adhikari, Pradeep;Hong, Seung-Bum
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.562-581
    • /
    • 2018
  • This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.