DOI QR코드

DOI QR Code

Relative importance of climatic and habitat factors on plant richness along elevation gradients on the Mt. Baekhwa, South Korea

백화산 고도별 식물 종풍부도에 대한 기후 및 서식지 인자의 상대적 중요성

  • Lee, Chang-Bae (Strategic Planning Office, Korea Forestry Promotion Institute) ;
  • Chun, Jung-Hwa (Research Planning and Coordination Division, National Institute of Forest Science)
  • 이창배 (한국임업진흥원 전략기획실) ;
  • 천정화 (국립산림과학원 연구기획과)
  • Received : 2017.05.19
  • Accepted : 2018.05.21
  • Published : 2018.09.30

Abstract

This study explored the richness patterns of vascular plant species and evaluated the effects of the climatic and habitat variables on the observed patterns along elevational gradients on the Mt. Baekhwa, South Korea. Plant data were recorded from 70 plots and a total of 187 plant species with 78 woody and 109 herbaceous species were recorded along two study transects, the Banyasa and Bohyunsa transects, on the Mt. Baekhwa. A total of 154 plant species with 66 woody and 88 herbaceous species and 131 plant species with 58 woody and 73 herbaceous species were recorded along the Banyasa and Bohyunsa transects, respectively. We used simple ordinary least squares regression model, multi-model inference and variation partitioning to analyze the relative contribution of climatic and habitat variables on the elevational richness patterns. Species richness pattern for vascular plants along the Banyasa transect monotonically decreased with elevation, whereas plant species richness showed reversed hump-shaped pattern along the Bohyunsa transect. Although the elevational patterns of species richness for vascular plants were different between the both transects, habitat variables are more important predictors than climatic variables for the elevational patterns of plant species richness along our study transects on the Mt. Baekhwa. These results indicate that elevational diversity patterns of vascular plants may be different even between nearby elevational transects in a mountain ecosystem but the diversity patterns may be controlled by same drivers.

본 연구는 백화산 지역 고도 구배에 따른 식물 종풍부도 패턴을 구명 하고, 관찰된 고도별 식물 종풍부도 패턴에 대한 기후 및 서식지 인자들의 효과를 구명하고자 수행되었다. 백화산 지역 두 개의 조사 구간인 반야사에서 한성봉 구간과 보현사에서 한성봉 구간을 따라 총 70개 조사구에서 목본식물 78종, 초본식물 109종 등 총 187종의 식물종이 관찰되었다. 구간별로 살펴보면, 반야사 구간에서 목본식물 66종, 초본식물 88종을 포함한 154종이 관찰되었으며, 보현사 구간에서는 목본식물 58종, 초본식물 73종 등 131종이 관찰되었다. 고도별 종풍부도 패턴에 대한 기후 및 서식지 인자의 상대적 중요성을 분석하기 위해 단순최소제곱 회귀모형, 다수준모형 및 변이분할을 수행하였다. 분석결과, 반야사 구간의 고도별 종풍부도 패턴은 감소형 패턴을 나타내었으며, 보현사 구간의 종풍부도 패턴은 역단봉형 패턴을 나타내었다. 비록, 고도별 식물종풍부도 패턴은 조사구간 별로 서로 다른 양상을 나타내었으나, 백화산 지역 본 연구 조사 구간에 있어서 고도별 식물 종다양성 패턴에 영향을 미치는 인자들의 상대적 중요성은 서식지 인자가 기후 인자보다 큰 것으로 나타났다. 이러한 결과는 동일한 산악 생태계 내에 위치하는 인근 조사구간에서 조차 고도별 식물 종 풍부도 패턴은 다를 수 있다는 것을 나타낸다. 하지만, 동시에 동일 산악 생태계 내에서의 상이한 패턴에도 불구하고 그 패턴을 제어하는 인자는 동일할 수 있음을 나타낸다.

Keywords

References

  1. Acharya, B. K., B. Chettri, and L. Vijayan, 2011: Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica 37, 329-336. https://doi.org/10.1016/j.actao.2011.03.005
  2. Anderson, D. R., K. P. Burnham, and G. C. White, 1998: Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies. Journal of Applied Statistics 25, 263-282. https://doi.org/10.1080/02664769823250
  3. Balme, O. E., 1953: Edaphic and vegetation zoning on the Carboniferous limestone of the Derbyshire Dales. Journal of Ecology 41, 331-344. https://doi.org/10.2307/2257045
  4. Bennie, J., M. Hill, R. Baxter, and B. Huntley, 2006: Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology 94, 355-368. https://doi.org/10.1111/j.1365-2745.2006.01104.x
  5. Braun-Blanquet, J., 1965: Plant Sociology. Hafner Publishing Company, 472pp.
  6. Brown, J., 2001: Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography 10, 101-109. https://doi.org/10.1046/j.1466-822x.2001.00228.x
  7. Burnham, K. P., and D. R. Anderson, 2002: Model selection and inference: a practical information-theoretic approach (2nd ed.). Springer, 488pp.
  8. Cho, H. J., Y. W. Lee, D. S. Lee, and S. C. Hong, 1991: Forest vegetation of Mt. Baekhwa. Journal of Korean Forest Society 80, 42-53. (In Korean with English abstract)
  9. Chun, J. H., and C. B. Lee, 2013: Assessing the effects of climate change on the geographic distribution of Pinus densiflora in Korea using Ecological Niche Model. Korean Journal of Agriculture and Forest Meteorology. 15, 291-233. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.291
  10. Chun, J. H., and C. B. Lee, 2017: Disentangling the local-scale drivers of taxonomic, phylogenetic and functional diversity in woody plant assemblages along elevational gradients in South Korea. PLoS ONE 12, e0185763. https://doi.org/10.1371/journal.pone.0185763
  11. Connell, J. H., 1961: The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalusstellatus. Ecology 42, 410-423. https://doi.org/10.2307/1932095
  12. Currie, D. J., G. G. Mittelbach, H. V. Cornell, R. Field, J. F. Guégan, B. A. Hawkins, D. M. Kaufman, J. T. Kerr, T. Oberdorff, E. O'Brien, and J. R. G. Turner, 2004: Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7, 1121-1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x
  13. Diniz-Filho, J. A. E., L. M. Bini, and B. A. Hawkins, 2003: Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12, 53-64. https://doi.org/10.1046/j.1466-822X.2003.00322.x
  14. Grau, O., J. A. Grytnes, and H. J. B. Birks, 2007: A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography 34, 1907-1915. https://doi.org/10.1111/j.1365-2699.2007.01745.x
  15. Grytnes, J. A., and O. R. Vetaas, 2002: Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist 159, 294-304. https://doi.org/10.1086/338542
  16. Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J. F. Guegan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O'Brien, E. E. Porter, and J. R. G. Turner, 2003: Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105-3117. https://doi.org/10.1890/03-8006
  17. Jones, M. M., H. Tuomisto, D. Borcard, P. Legendre, D. B. Clark, and P. C. Olivas, 2008: Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155, 593-604. https://doi.org/10.1007/s00442-007-0923-8
  18. Kerr, J. T., and L. Packer, 1997: Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252-254. https://doi.org/10.1038/385252a0
  19. Kluge, J., M. Kessler, and R. R. Dunn, 2006: What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography 15, 358-371. https://doi.org/10.1111/j.1466-822X.2006.00223.x
  20. Korner, C., 2000: Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology and Evolution 15, 513-514. https://doi.org/10.1016/S0169-5347(00)02004-8
  21. Laliberte, E., J. B. Grace, M. A. Huston, H. Lambers, F. P. Teste, B. L. Turner, and D. A. Wardle, 2013: How does pedogenesis drive plant diversity? Trends in Ecology and Evolution 28, 331-340. https://doi.org/10.1016/j.tree.2013.02.008
  22. Lee, C. B., J. H. Chun, and H. H. Ahn, 2014: Elevational patterns of plant richness and their drivers on an Asian mountain. Nordic Journal of Botany 32, 347-357. https://doi.org/10.1111/j.1756-1051.2013.00181.x
  23. Legendre, P., 1993: Spatial autocorrelation: trouble or new paradiam? Ecology 85, 1659-1673.
  24. Legendre, P., and L. Legendre, 1998: Numerical ecology (2nd ed.). Elsevier, 853pp.
  25. Li, J., Q. He, X. Hua, J. Zhou, H. Xu, J. Chen, and C. Fu, 2009: Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Global Ecology and Biogeography 18, 264-272. https://doi.org/10.1111/j.1466-8238.2008.00430.x
  26. Liu, J., T. Yunhong, and J. W. F. Slik, 2014: Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecology and Management 330, 75-81. https://doi.org/10.1016/j.foreco.2014.06.045
  27. Lomolino, M. V., 2001: Elevational gradients of species-density: historical and prospective views. Global Ecology and Biogeography 10, 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x
  28. Oommen, M. A., and K. Shanker, 2005: Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology 86, 3039-3047. https://doi.org/10.1890/04-1837
  29. Qian, H., and R. E. Ricklefs, 2000: Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180-182. https://doi.org/10.1038/35025052
  30. Qian, H., Z. Hao, and J. Zhang, 2014: Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology 7(2), 154-165. https://doi.org/10.1093/jpe/rtt072
  31. Rahbek, C., 1995: The elevational gradient of species richness: a uniform pattern? Ecography 18, 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
  32. Rahbek, C., 2005: The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8, 224-239.
  33. Rowe, R. J., 2009: Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32, 411-422. https://doi.org/10.1111/j.1600-0587.2008.05538.x
  34. Sanders, N. J., J. Moss, and D. Wagner, 2003: Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography 12, 93-102. https://doi.org/10.1046/j.1466-822X.2003.00324.x
  35. Stevens, G. C., 1992: The elevational gradient in altitudinal range, an extension of Rapoport's latitudinal rule to altitude. American Naturalist 140, 893-911. https://doi.org/10.1086/285447
  36. Storch, D., R. G. Davies, S. Zajicek, C. D. L. Orme, V. Olson, G. H. Thomas, T. S. Ding, P. C. Rasmussen, R. S. Ridgely, P. M. Bennett, T. M. Blackburn, I. P. F. Owens, and K. J. Gaston, 2006: Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecology Letters 9, 1308-1320. https://doi.org/10.1111/j.1461-0248.2006.00984.x